期刊文献+

基于FPGA的逆QR分解SMI算法的并行实现方法 被引量:5

Implementation method of inverse QR decomposition SMI algorithm parallel processing based on FPGA
在线阅读 下载PDF
导出
摘要 在讨论了逆QR分解(逆正交三角分解)SM(I采样矩阵求逆)自适应波束形成算法的基础上,研究了逆QR分解SMI算法的Systolic阵列(脉动阵列)并行实现结构,分析了组成Systolic阵列的各PE(处理单元)单元的基本运算模块的实现,并给出了逆QR分解SMI算法基于Systolic阵列结构的FPGA(现场可编程门阵列)并行实现方法,提出了系统整体的设计与构架。 Based on discussion of the inverse QR decomposition in the SMI adaptive beam-forming algorithm, it studies Systolic array parallel implementation structures of the inverse QR decomposition SMI algorithm, analyzes the PE unit which is used to compose Systolic array to achieve the basic computing modules, gives the inverse QR decomposition SMI algorithm based on Systolic array structure parallel implementation of the FPGA, proposes over- all system design and architecture.
作者 刘千里
出处 《计算机工程与应用》 CSCD 2012年第26期71-75,161,共6页 Computer Engineering and Applications
关键词 正交三角分解 采样矩阵求逆 自适应波束形成 Systolic阵列 现场可编程门阵列 QR decomposition Sample Matrix Inversion(SMI) adaptive beam-forming Systolic array Field Pro-grammable Gate Array (FPGA)
  • 相关文献

参考文献8

  • 1李启虎.声纳信号处理引论[M].2版.北京:北京海洋出版社,2003:12-15.
  • 2陈晓初.相控阵雷达自适应数字波束形成[D].西安:西安电子科技大学,1992:35-40.
  • 3贡三元.VLSI阵列处理[M].南京:东南大学出版社,1990:56-80.
  • 4冯地耕.基于QR分解的ADBF算法及其DSP实现研究[D].西安:西安电子科技大学,2004:35-43.
  • 5石斌斌,钱林杰,程翥,皇甫堪.基于CORDIC的滑窗最小二乘递推算法[J].系统工程与电子技术,2010,32(11):2304-2308. 被引量:3
  • 6白振锋,萧宝瑾.智能天线自适应波束赋形算法的研究[J].山西电子技术,2007(1):54-57. 被引量:4
  • 7孙世新,卢光辉,等.并行算法及其应用[M].北京:机械工业出版社,2004:33-45.
  • 8王诚,薛小刚,钟信潮.FPGA/CPLD设计工具-xilinxISE5使用详解[M].北京:人民邮电出版社,2003:1-18.

二级参考文献14

  • 1[3]Rong Z.Simulation of Adaptive Array Algorithms for CDMA Systems.M.S.Thesis,The Virginia Polytechnic Institute State University,1996.
  • 2[4]Swindllehurst A,Daas S,Yang J.Analysis of a Decision Directed Beamformer[M].IEEE Trans on Sig.Proc,43(12):2920-2927,I)eeemher 1995.
  • 3[5]Petrus P.Novel Adaptive Array Algorithms and Their Impact on Cellular Svstem Capacity.PhD Thesis,The Virginia Polvtechnic and Statea University,1997.
  • 4Proakis G J.Algorithms for statistical signal processing[M].New Jersey:American Prentice-Hall,2002.
  • 5Gao L J,Parhi K K.Hierarchical pipelining and folding of QRD-RLS adaptive filters and its application to digital beam forming[J].IEEE Trans.on Circuits and Systems-Ⅱ:Analog and Digital Signal Processing,2000,47(12):1503-1519.
  • 6Wu C S,Wu A Y.Modified vector rotational CORDIC (MVRCORDIC) algorithm and architecture[J].IEEE Trans.on Circuits and Systems Ⅱ:Analog and Digital Signal Processing,2001,48(1):548-561.
  • 7Wu C S,Wu A Y,Lin C H.A high-performance/low-latency vector rotational CORDIC architecture based on extended elementary angle set and trellis-based searching schemes[J].IEEE Trans.on Circuits and Systems-Ⅱ:Analog and Digital Signal Processing,2003,50(9):589-601.
  • 8Park S Y,Cho N I.Fixed-point error analysis of CORDIC processor based on the variance propagation formula[J].IEEE Trans.on Circuits and Systems Ⅰ:Fundamental Theory Regular Papers,2004,51(3):573-584.
  • 9Gomes J,Barroso V A N.Array-based QR-RLS multicbannel lattice filtering[J].IEEE Trans.on Signal Prrocessing,2008,56(8):3510 -3522.
  • 10Meher P K,Valls J,Juang T B.50 years of CORDIC:algorithms,architectures,and applications[J].IEEE Trans.on Circuits and Systems Ⅰ:Regular Papers,2009,56 (9):1893 -1907.

共引文献5

同被引文献31

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部