期刊文献+

基于改进型蚁群算法的最优路径问题求解 被引量:10

Solving Optimal Path Problem Based on Improved Ant Colony Algorithm
在线阅读 下载PDF
导出
摘要 如何高效的向用户提供最优路径是蚁群算法大规模应用于导航系统的关键问题,针对现有最优路径问题研究中蚁群算法收敛速度慢及容易发生停滞的缺点,利用A*算法的启发式信息改进蚁群算法的路径选择策略,加快算法收敛速度.同时引入遗传算法的双种群策略和蚁群系统信息素更新策略,增加全局搜索能力,避免算法出现停滞现象.仿真实验结果表明,该改进算法具有较好的稳定性和全局优化性,且收敛速度较快. Efficient optimal path is the key issue of the Ant Colony Algorithm used in road traffic navigation system. Aiming at the problem of slow convergence and stagnation phenomenon of Ant Colony Algorithm, this paper introduce path selection strategy which is based on the heuristic factor of A^* algorithm to speed up the convergence. Meanwhile the Double-population strategy of the Genetic algorithm and the pheromone update rules of the Ant Colony System (ACS) are introduced in the algorithm, which avoid stagnation of the algorithm of the algorithm and speed up convergence. The results of the simulation experiment show that the improved algorithm has good stability, global optimization and fast convergence.
作者 张志协 曹阳
出处 《计算机系统应用》 2012年第10期76-80,共5页 Computer Systems & Applications
基金 广东省教育部产学研结合项目(2009B090300326) 广东省科技计划(2010A040306003)
关键词 最优路径 蚁群算法 A*算法 双种群策略 optimal path Ant Colony Algorithm A^* algorithm Double-population strategy
  • 相关文献

参考文献7

  • 1Dorigo M, ManiezzoV, Colomi A. The Ant System: Optimi- zation by a Colony of Cooperating Agents. IEEE Trans. on Systems, Man, and Cybernetics: Part B, 1996,26(1):29-41.
  • 2Gambardella LM, Dorigo M. Ant-Q:A reinforcement learning approach to the traveling salesman problem. In: Prieditis A, Russell S. ed. Proc. of the Twelfth International Conference on Machine Learning. Morgan Kaufmann Publishers, Palo Alto, CA, 1995. 252-260.
  • 3Dorigo M, Gambardella LM. Ant colony system: A cooperative learning approach to the traveling saleman problem. IEEE Trans. on Evolutionary Computation, 1997, 1(1):53-66.
  • 4Stutzle T. MAX-MIN Ant System for Quadratic Assignment Problems. Technical Report AIDA-97, Intellectics Group, Department of Computer Science. Darmstadt University of TechnoloL, y, Germany, 1997.
  • 5刘伟.基于蚁群算法的动态路径研究.成都:西南交通大学,2005.
  • 6刘好斌,胡小兵,赵吉东.动态调整路径选择的蚁群优化算法[J].计算机工程,2010,36(17):201-203. 被引量:7
  • 7胡耀民,刘伟铭.基于改进型蚁群算法的最优路径问题求解[J].华南理工大学学报(自然科学版),2010,38(10):105-110. 被引量:15

二级参考文献7

共引文献20

同被引文献97

引证文献10

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部