期刊文献+

基于多标签ReliefF的特征选择算法 被引量:37

Feature selection algorithm based on multi-label ReliefF
在线阅读 下载PDF
导出
摘要 针对传统特征选择算法局限于单标签数据问题,提出一种多标签数据特征选择算法——多标签ReliefF算法。该算法依据多标签数据类别的共现性,假设样本各类标签的贡献值是相等的,结合三种贡献值计算方法,改进特征权值更新公式,最终获得有效的分类特征。分类实验结果表明,在特征维数相同的情况下,多标签ReliefF算法的分类正确率明显高于传统特征选择算法。 The traditional feature selection algorithms are limited to single-label data. Concerning this problem, multi- label ReliefF algorithm was proposed for multi-label feature selection. For multi-label data, based on label co-occurrence, this algorithm assumed the label contribution value was equal. Combined with three new methods calculating the label contribution, the updating formula of feature weights was improved. Finally a distinguishable feature subset was selected from original features. Classification experiments demonstrate that, with the same number of features, classification accuracy of the proposed algorithm is obviously higher than the traditional approaches.
出处 《计算机应用》 CSCD 北大核心 2012年第10期2888-2890,2898,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61073116 61003131) 安徽省高校自然科学研究重点项目(KJ2010A006)
关键词 特征选择 多标签 RELIEFF 降维 模式识别 feature selection multi-label RefiefF dimensionality reduction pattern recognition
  • 相关文献

参考文献15

  • 1HANJIAWEI,MICHELINEK.Dataminingconceptsandtech-niques[M].2版.北京:机械工业出版社,2007.
  • 2钱宇华,梁吉业,王锋.面向非完备决策表的正向近似特征选择加速算法[J].计算机学报,2011,34(3):435-442. 被引量:26
  • 3HUA JIANPING, TEMBE W D, DOUGHERTY E R. Performance of feature selection methods in the classification of high-dimension data[ J]. Pattern Recognition, 2009, 42(3) : 409 - 424.
  • 4GUNAL S, GEREK O N, ECE D G, et al. The search for optimal feature set in power quality event classification[ J]. Expert Systems with Applications, 2009, 36(7) : 10266 - 10273.
  • 5YI LIU, ZHENG YUAN. FS_SFS: A novel feature selection method for support vector machines[ J] 1333 - 1345. Pattern Recognition, 2006, 39 (7).
  • 6范文兵,王全全,雷天友,朱辉.基于Q-relief的图像特征选择算法[J].计算机应用,2011,31(3):724-728. 被引量:8
  • 7KIRA K, RENDELL L. The feature selection problem: Traditional methods and a new algorithm[ C]//Proceedings of the Ninth Nation- al Conference on Artificial Intelligence. New Orleans: AAAI Press, 1992:129 - 134.
  • 8KONONENKO I. Estimating attributes: Analysis and extensions of RELIEF[ C]// Proceedings of the 1994 European Conference on Machine Learning, LNCS 784. Berlin: Springer, 1994:171-182.
  • 9ROBNIK--IKONJAM, KONONENKO I. Theoretical and empirical analysis of ReliefF and RReliefF [ J]. Machine Learning, 2003, 53 (1/2) : 23 -69.
  • 10ZHANG MIN-LING, ZHOU ZHI-HUA. ML-KNN: A lazy leaming approach to multi-label learning[ J]. Pattern Recognition, 2007, 40 (7) : 2038 -2048.

二级参考文献23

共引文献31

同被引文献325

引证文献37

二级引证文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部