期刊文献+

基于故障先兆判定模型和动态置信度匹配的主轴润滑故障预测方法 被引量:4

Spindle Lubrication Fault Prediction Based on Fault Symptom Decision Model and Dynamic Confidence Matching
在线阅读 下载PDF
导出
摘要 为提高数控机床主轴传动系统润滑不良故障的预测能力和预知性维护能力,针对现有故障预测方法的局限性以及主轴零部件耦合、故障并发等特征,提出一种基于故障先兆判定模型和动态置信度匹配的主轴润滑故障预测方法。根据关联程度约简故障先兆表征参数,基于故障历史数据集定义故障先兆状态序列,结合小波分析和概率神经网络技术构建故障先兆判定模型,设计动态置信度匹配算法,进而从可靠性和正确性的角度融合各故障先兆参数状态匹配结果,在线预测故障发生的概率及时间。试验结果表明,该方法能够有效实现主轴传动系统润滑不良故障的预测。 Considering the limitations of the available methods and the features of parts coupling and fault concurrent, a method for spindle lubrication fault prediction based on fault symptom decision model and dynamic confidence matching is proposed, to improve the ability of lubrication fault prediction and predictive maintenance on spindle transmission system of a computer numerical control (CNC) machine tool. Fault symptom parameters of spindle are reduced first according to correlation degree and fault symptom condition sequences of parameters are defined on basis of historical fault data set. Fault symptom decision models are built based on wavelet analysis and probabilistic neural network technologies, which are used to identify real-time condition of fault symptom parameters. Dynamic confidence matching algorithm is designed and multiparameter matching results with fault symptom condition sequences are fused from reliability and accuracy point of view. On this basis, fault probability and occurrence time can be predicted online. Experimental results show that the method can accurately predict spindle lubrication fault.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2012年第17期75-82,共8页 Journal of Mechanical Engineering
基金 国家科技重大专项资助项目(2011ZX04016-071)
关键词 故障预测 主轴润滑 故障先兆判定模型 动态置信度匹配 数控机床 Fault prediction Spindle lubrication Fault symptom decision model Dynamic confidence matching CNC machine tool
  • 相关文献

参考文献17

  • 1张小丽,陈雪峰,李兵,何正嘉.机械重大装备寿命预测综述[J].机械工程学报,2011,47(11):100-116. 被引量:121
  • 2SIEMENS. SINUMERIK 840D/810D/FM-NC programming: Mould machining[M]. Germany. Siemens Ltd. Press, 2004.
  • 3FANUC. Series 30i/31i/32i-A user's manual (for MC) [M]. Japan: Fanuc Ltd. Press, 2004.
  • 4HEIDENHAIN. iTNC530-A user's manual[M]. China, Taiwan: Heidenhain Ltd. Press, 2002.
  • 5AL-BADOUR F, SUNAR M, CHEDED L. Vibration analysis of rotating machinery using time-frequency analysis and wavelet techniques[J]. Mechanical Systems and SignalProcessing, 2011, 25.. 2083-2101.
  • 6ZANARDELLI W G, STRANGAS E G, KHALIL H K, et al. Wavelet-based methods for the prognosis of mechanical and electrical failures in electric motors[J]. Mechanical Systems and Signal Processing, 2005, 19: 411-426.
  • 7BAYDAR N, BALL A. Detection of gear failures via vibration and acoustic signals using wavelet transform[J]. Mechanical Systems and Signal Processing, 2003, 17(4): 787-804.
  • 8曾庆虎,邱静,刘冠军,谭晓栋.基于KPCA-HSMM设备退化状态识别与故障预测方法研究[J].仪器仪表学报,2009,30(7):1341-1346. 被引量:29
  • 9曾庆虎,邱静,刘冠军.小波相关特征尺度熵和隐半马尔可夫模型在设备退化状态识别中的应用[J].机械工程学报,2008,44(11):236-241. 被引量:12
  • 10MAHAMAD A K, SAON S, HIYAMA T. Predicting remaining useful life of rotating machinery based artificial neural network[J]. Computers and Mathematics withAoolications, 2010, 60. 1078-1087.

二级参考文献122

共引文献239

同被引文献55

  • 1张冬青,宁宣熙,刘雪妮.基于RBF-HMM模型的时间序列在线预测[J].系统工程学报,2010,25(1):17-23. 被引量:8
  • 2苏小萍.CFRP层板的疲劳损伤研究方法[J].纤维复合材料,2004,21(3):60-61. 被引量:4
  • 3刘飞,鄢萍,贺德强.网络化制造系统中的多功能交互式信息终端:中国,ZL02113585.1[P].2003-10-22.
  • 4VENKATASUBRAMANIAN V. Prognostic and diagnostic monitoring of complex systems for product lifecycle man- agement : challenges and opportunities [ J ]. Computers & Chemical Engineering, 2005,29(6) :1253-1263.
  • 5VENKATASUBRAMANIAN V. Systemic failures: chal- lenges and opportunities in risk management in complex systems[J]. AIChE Journal, 2011,57( 1 ) :2-9.
  • 6LEE J, NI J, DJURDJANOVIC D, et al. Intelligent prognostics tools and e-maintenance [ J]. Computers in Industry, 2006,57 (6) :476-489.
  • 7DJURDJANOVIC D, LEE J, NI J. Watchdog agent--an infotronics based prognostics approach for product performance degradation assessment and prediction [ J ]. Advanced Engineering Informatics, 2003,17 ( 3 ) : 109- 125.
  • 8KAZUHIKO S, YOSHIOMI M. How to prevent accidents in process industries? recent accidents and safety activi- ties in Japan: the 4th World Conference of Safety of Oil and Gas Industry, June 27-30,2012[ C]. Seoul: Korea, c2012.
  • 9MULLER J, LEMKE F. Self-organizing data mining [ M]. Berlin, Hamburg: Libri Books, 2000.
  • 10LIU Mingzhou,ZHAO Zhibiao,GE Maogen,et al.Research of correlation-model between qualities attributes and quality control points in assembly process of the complex product based on network flow[J].Advanced Materials Research,2012(11):403-408:3015-3021.

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部