摘要
研究了具有两类顾客的M/M/1排队系统,其中,一类顾客具有强占优先权,等待空间无限;第二类顾客分正顾客和负顾客两种,正顾客等待空间有限,负顾客到达后抵消队尾的正顾客。第二类正、负顾客的到达率随已到达第二类正顾客数的变化而变化,即当等待中的正顾客数增多时,正顾客的到达率会减小而负顾客的到达率会增大。利用矩阵几何解理论得到两类顾客的平均队长和第二类顾客的溢出率,最后利用Matlab计算分析了各参数对系统的影响。
An M/M/1 queue with 2-class customers was studied.Class one had the preemptive priority.Class two included both positive and negative customers with finite source.The arrival rate of negative and positive customers in class two depends on the number of class two in the system.In other words,when the number of class two increases,the arrival rate of positive customers will cut down but the negative will go up.The average queue length of the 2-class and the loss rate of class two were obtained by using matrix-geometric solution.The influence of various parameters on the system was researched by using Matlab.
出处
《河南科技大学学报(自然科学版)》
CAS
北大核心
2012年第6期64-68,73,共6页
Journal of Henan University of Science And Technology:Natural Science
基金
国家自然科学基金项目(71071133)
关键词
强占优先权
负顾客
矩阵几何解
平均队长
溢出率
Preemptive priority
Negative customer
Matrix-geometric solution
Average queue length
Loss rate