期刊文献+

两类分别带有负顾客和强占优先权的排队系统 被引量:1

Two Kinds of Queuing Systems with Negative Customers and Preemptive Priority
在线阅读 下载PDF
导出
摘要 研究了具有两类顾客的M/M/1排队系统,其中,一类顾客具有强占优先权,等待空间无限;第二类顾客分正顾客和负顾客两种,正顾客等待空间有限,负顾客到达后抵消队尾的正顾客。第二类正、负顾客的到达率随已到达第二类正顾客数的变化而变化,即当等待中的正顾客数增多时,正顾客的到达率会减小而负顾客的到达率会增大。利用矩阵几何解理论得到两类顾客的平均队长和第二类顾客的溢出率,最后利用Matlab计算分析了各参数对系统的影响。 An M/M/1 queue with 2-class customers was studied.Class one had the preemptive priority.Class two included both positive and negative customers with finite source.The arrival rate of negative and positive customers in class two depends on the number of class two in the system.In other words,when the number of class two increases,the arrival rate of positive customers will cut down but the negative will go up.The average queue length of the 2-class and the loss rate of class two were obtained by using matrix-geometric solution.The influence of various parameters on the system was researched by using Matlab.
机构地区 燕山大学理学院
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2012年第6期64-68,73,共6页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金项目(71071133)
关键词 强占优先权 负顾客 矩阵几何解 平均队长 溢出率 Preemptive priority Negative customer Matrix-geometric solution Average queue length Loss rate
  • 相关文献

参考文献8

  • 1Gelenbe E. Queues with Negative Arrivals [ J ]. J Appl Prob, 1991,28 (3) :656 - 663.
  • 2Movaghar A. On Queueing with Customer Impatience Until the Beginning of Service [ J ]. Queueing Systems, 1998 (29) :337 - 350.
  • 3Miller D R. Computation of Steady-state Probabilities for M/M/I Priority Queues [ J ]. Operations Research, 1981 (29) :945 -958.
  • 4Steve D. An Eigen Value Approach to Analyzing a Finite Source Priority Queuing Model [ J]. Annals of Operations Research ,2002,112 : 139 - 152.
  • 5杜贞斌,朱翼隽,肖江,陈洋.负顾客的M/G/1排队模型[J].江苏大学学报(自然科学版),2002,23(3):91-94. 被引量:20
  • 6陈佩树,朱翼隽,耿响.具有强占优先权的不耐烦顾客的M/M/m/k排队模型[J].系统工程与电子技术,2008,30(6):1069-1073. 被引量:11
  • 7赵国喜,朱翼隽,庄斌.不耐烦等待信元的优先权排队[J].江苏大学学报(自然科学版),2003,24(6):5-8. 被引量:12
  • 8Neuts M F. Matrix-geometric Solutions in Stochastic Models:an Algorithmic Approach[ M ]. Baltimore MD :Johns Hopkins University Press, 1981.

二级参考文献19

  • 1朱翼隽,朱仁祥.基于重试、不耐烦M/M/s/k+M排队的呼叫中心性能分析[J].江苏大学学报(自然科学版),2004,25(5):401-404. 被引量:19
  • 2华兴.排队论与随机服务系统[M].上海:上海翻译出版社,1987.137.
  • 3Mehmet M Ali, Song X. A performance analysis of a discretetime priority queueing system with correlated arrivals[J]. Performance Evaluation ,2004(57) : 307 - 339.
  • 4Movaghar Ali. Optimal control of parallel queues with impatient customers[J]. Performance Evaluation ,2005(60) : 327 - 343.
  • 5Csizmar Amy Dalai, Jordan Scott. Optimal scheduling in a queue with differentiated impatient users [J]. Performance Evaluation,2005(59) : 73 -84.
  • 6Movaghar Ali. On queueing with customer impatience until the beginning of service [J]. Queueing Systems, 1998 ( 29 ) :337 -350.
  • 7Andreas Brandt, Manfred Brandt. On a two-queue priority system with impatience and it's application to a call center[J]. Methodology and Computing in Applied Probability, 1999,1 : 191 - 210.
  • 8Wei Li, Kia Makki, Niki Pissinou. Perfornance analusis of a PCS network with state dependent call arrival process and impatient calls[J]. Computer Communications, 2002(25) : 507 - 515.
  • 9[1]Gelenbe E, at al. Queues with Negative Arrivals[J].J Appl Prob, 1991(28):245-250.
  • 10[2]Harrison,Pitel. Sojourn Times in Single Server Que-ues with Negative Customers[J].J Appl Prob,1993(30):943-963.

共引文献38

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部