期刊文献+

二阶线性矩阵微分系统振动的变分准则

VARIATIONAL OSCILLATION CRITERIA FOR SECOND ORDER LINEAR MATRIX DIFFERENTIAL SYSTEMS
原文传递
导出
摘要 讨论了二阶线性矩阵微分系统(P(t)Y′(t))′+Q(t)Y(t)=0,t≥t_0的振动性,其中P(t),Q(t)和Y(t)是n×n实连续矩阵函数,P(t)和Q(t)是对称的,且P(t)是正定的(t≥t_0).采用变分方法,得到了该系统振动的向量形式的新准则,并举例进行了验证. In this paper, the second order linear matrix differential systems of the form (P(t)Y')' + Q(t)Y = O, t ≥to is considered, where P(t), Q(t) and Y(t) are n × n real continuous matrix functions. P(t) and Q(t) are symmetric, and P(t) is positive definite (t ≥ to). Using varitional method, new oscillation criteria for the system is established. And an example using the result is given.
作者 白羽 俞元洪
出处 《系统科学与数学》 CSCD 北大核心 2012年第7期847-851,共5页 Journal of Systems Science and Mathematical Sciences
基金 北京市属高等学校人才强教计划资助项目(201107123) 北京市教委科技计划面上项目(KM201110016012)
关键词 矩阵微分系统 振动 变分方法 向量. Matrix differential system, oscillation, variational method, vector.
  • 相关文献

参考文献8

  • 1Hinton D B, Lewis R T. Oscillation theory of generalized second order differential equations. Rocky Mountain J. Math., 1980, 10(2): 751-761.
  • 2Li H J. Oscillation criteria for second order linear differential equations. Journal of Mathematical Analysis and Applications, 1995, 194: 217-234.
  • 3郑召文,孟凡伟,俞元洪.二阶线性矩阵微分系统的振动性[J].数学学报(中文版),1998,41(6):1231-1238. 被引量:6
  • 4Rogovchenko Y V. Oscillation theorems for second-order equations with damping. Nonlinear Anal- .sis, 2000, 41: 1005-1028.
  • 5王其如.二阶线性矩阵微分系统的振动准则[J].系统科学与数学,2003,23(2):235-241. 被引量:2
  • 6师文英,王培光.二阶线性矩阵微分系统的振动性[J].系统科学与数学,2005,25(5):620-633. 被引量:3
  • 7Wong J S W. Oscillation criteria for a forced second-order linear differential equation. Journal o] Mathematical Analysis and Applications, 1999, 231: 235-240.
  • 8Wang Q R. Interval criteria for oscillation of second order self-adjoint matrix differential systems. Ann. Polon. Math., 2003, 82(1): 87-93.

二级参考文献19

  • 1Wang Qiru. Oscillation criteria for second order matrix differential systems. Arch. Math. (Basel),2001, 76(5): 385-390.
  • 2Butler G J, Erbe L H and Mingarelli A B. Riccati techniques and variational principles in oscillation theory for linear systems. Trans. Amer. Math. Soc., 1987, 303(1): 263-282.
  • 3Erbe L H, Kong Q and Ruan S. Kamenev type theorems for second order matrix differential systems. Proc. Amer. Math. Soc., 1993, 117(4): 957-962.
  • 4Meng F, Wang J and Zheng Z. A note on Kamenev type theorems for second order matrix differential systems. Proc. Amer. Math. Soc., 1998, 126(2): 391-395.
  • 5Philos Ch G. Oscillation theorems for linear aifferential equations of second order. Arch. Math.(Basel), 1989, 53(2): 482-492.
  • 6Erbe L H,Proc Am Math Soc,1993年,117卷,1期,957页
  • 7俞元洪,Math Nachr,1991年,153卷,1期,137页
  • 8燕居让,应用数学学报,1987年,10卷,2期,167页
  • 9Li H J. Oscillation criteria for second order linear differential equations. J. Math. Anal. Appl,1995, 194: 217-234.
  • 10Rogovchenko Y V. Oscillation theorems for second-order equations with damping. Nonlinear Analysis, 2000, 41: 1005-1028.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部