摘要
讨论了二阶线性矩阵微分系统(P(t)Y′(t))′+Q(t)Y(t)=0,t≥t_0的振动性,其中P(t),Q(t)和Y(t)是n×n实连续矩阵函数,P(t)和Q(t)是对称的,且P(t)是正定的(t≥t_0).采用变分方法,得到了该系统振动的向量形式的新准则,并举例进行了验证.
In this paper, the second order linear matrix differential systems of the form (P(t)Y')' + Q(t)Y = O, t ≥to is considered, where P(t), Q(t) and Y(t) are n × n real continuous matrix functions. P(t) and Q(t) are symmetric, and P(t) is positive definite (t ≥ to). Using varitional method, new oscillation criteria for the system is established. And an example using the result is given.
出处
《系统科学与数学》
CSCD
北大核心
2012年第7期847-851,共5页
Journal of Systems Science and Mathematical Sciences
基金
北京市属高等学校人才强教计划资助项目(201107123)
北京市教委科技计划面上项目(KM201110016012)
关键词
矩阵微分系统
振动
变分方法
向量.
Matrix differential system, oscillation, variational method, vector.