期刊文献+

一种基于粗糙K均值的多靶点中心优化方法

A multi-target center optimization approach based on rough K-means algorithm
在线阅读 下载PDF
导出
摘要 结合粗糙集理论与K均值算法,提出一种粗糙K均值多靶点中心优化方法,通过噪声去除、多靶点区域识别、靶点中心计算三个步骤获取多个靶点中心的最优坐标。最后,在仿真桥梁上进行检验,结果显示其精度为74.5%,相关系数为0.290,说明该方法具有一定的准确性与鲁棒性。 The center coordinates of the multi-target optimization approach is the key to improving the accuracy of the digital measurement system and intelligent image system. Combining the rough set theory and the K-means algorithm, this paper proposed a multi-target optimization approach with the rough set theory. The optimized co- ordinate with a multi-target center was obtained by the noise removal, muhi-target region recognition and the target center calculation. Finally, we validated the method's performance on a simulation bridge. The results showed that the accuracy was 74.5%, the correlated coefficient was 0.290, indicating that this method satisfacto- rily met the requirement of accuracy and robustness.
出处 《苏州科技学院学报(工程技术版)》 CAS 2012年第3期76-80,共5页 Journal of Suzhou University of Science and Technology (Engineering and Technology)
基金 住房与城乡建设部科技项目(2009-K5-10) 苏州科技学院科研基金(2008Z1327)
关键词 粗糙K均值 多靶点 靶点中心 桥梁监测 rough K-means algorithm multi-targets targets center bridge monitoring system
  • 相关文献

参考文献7

二级参考文献17

  • 1[3]Fukunage K,Hostetler L D.The estimation of the gradient of a density function with application in pattern recognition[J].IEEE Trans.Information Theory,1975,21(1):32-40.
  • 2[4]Yizong Cheng.Mean shift,mode seeking,and clustering[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1995,17(8):790-799.
  • 3[5]Dorin C,Visvanathan R,Peter M.Real-time Tracking of Non-rigid Objects Using Mean Shift[C].IEEE Conf.Computer Vision and Pattern Recongnition,2000:142-149.
  • 4[1]SHORTIS M R. A comparison of some techniques for the subpixel locaton of discrete target images[ M]. SPIE Videometrics Ⅲ,Ⅴ. 2350, Boston, USA, 1994.. 239-250.
  • 5Novak L M, Owirka G J, and Warver A L. Atuomatic target recognition using enhanced resolution SAR data [J]. IEEE Transactions on Aerospace and Electronic System, 1999, 35(1) 157-175.
  • 6Yu Hong-bo, Lei Li-ping, Xie Zhi-ping, and Chen Huai-xin.Application of assistant knowledge to detect aad recognize target in SAR imagery synthetic aperture radar [C]. 2009 APSAR, Xi'an, China, Oct 26-30, 2009: 860-863.
  • 7Lin Yue-song, Xue An-ke, Peng Dong-liang, and Jin Zhao-yang. SAR imagery scattering center extraction and target recognition based on scattering center model [C]. Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 2006: 9631-9636.
  • 8Wang Zheng-ming and Wang Wei-wei. Fast and adaptive method for SAR superresolution imaging based on point scattering model and optimal basis selection [J]. IEEE Transactions on Image Processing, 2009, 18(7): 1477-1486.
  • 9Potter L C and Moses R L. Attributed scattering centers for SAR ATR [J]. IEEE Transactions on Image Processing, 1997, 6(1): 79-91.
  • 10Jin Tian and Zhou Zhimin. Ultrawideband synthetic aperture radar landmine detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3561-3573.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部