期刊文献+

基于BP神经网络的杉木林蓄积量估测研究 被引量:11

Research on the estimation of Chinese fir volume based on BP neural networks
在线阅读 下载PDF
导出
摘要 以杉木人工林为研究对象,选取与蓄积量预测有关的因子作为样本输入,通过分析神经网络各参数对网络性能的影响得到最佳参数值,构建结构为10∶3∶1的杉木林蓄积量BP神经网络模型,通过模型训练随机抽取46个样本单元数据并预测20个检验样本。结果表明:BP神经网络对于林分蓄积量具有很好的模拟效果,总体拟合精度为88.5%,均方误差MSE=2.95,所构模型合理、稳定,能够快速有效预测杉木林的变化规律。 Taking artificial Chinese fir as study object, this paper selected factors related to stock volume prediction as input samples. The best parameter values were obtained by analyzing the impact of parameters on the neural networks performance, and then the BP neural network model of Chinese fir volume was built with the structure of 10: 3: 1. Finally, 46 samples were selected randomly by model training and 20 test samples were predicted. The results showed that there was a good simulation of stock volume by BP neural networks, with overall fitting accuracy 88.5%, and mean square error 2.95, illustrating that the model was reasonable, stable and able to predict the law of Chinese fir changes fast and effectively.
出处 《福建林学院学报》 CSCD 北大核心 2012年第4期310-315,共6页 Journal of Fujian College of Forestry
基金 福建省林业厅科技研究项目(DH-397)
关键词 杉木林 人工神经网络 BP算法 蓄积量预测 Chinese fir arcial neural networks BP algorithm stock volume prediction
  • 相关文献

参考文献12

二级参考文献78

共引文献224

同被引文献199

引证文献11

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部