期刊文献+

多采样率卡尔曼滤波器在汽车状态估计中的应用 被引量:11

Application of Multirate Unscented Kalman Filter to State Estimation in Vehicle's Active Front Steering System
在线阅读 下载PDF
导出
摘要 为了改善复杂系统中单采样率控制策略的控制品质,在深入研究多采样率数字控制系统和卡尔曼滤波算法的基础上,提出了输入多采样率的卡尔曼滤波算法.将该算法应用于汽车主动前轮转向系统中,对横摆角速度、质心侧偏角和纵向车速进行估计,通过Carsim与Simulink的联合仿真以及蒙特卡罗试验,验证了算法的有效性.研究结果表明:多采样率卡尔曼滤波算法有利于融合多个输入量的信息,能改善状态估计器的性能,比单采样率卡尔曼滤波算法具有更高的稳定性,且估计误差减小4.0%~48.7%. In order to improve the control quality of the single-rate digital control strategy in a complex system,an input multirate unscented Kalman filter(IMRUKF) was developed by combination of multirate digital control systems and the unscented Kalman filter(UKF) algorithm.The IMRUKF algorithm was applied to estimate the yaw rate,slip angle,and longitudinal velocity of the active front steering(AFS) system of vehicles.Then,a co-simulation and a Monte Carlo experiment were carried out using Carsim and Simulink.The results show that IMRUKF improves the ability of the state estimator by integrating multi-input information.Compared with the single-rate UKF algorithm,the IMRUKF algorithm has a higher stability and a smaller estimation error(with a reduction in the error of around 4.0% to 48.7%).
出处 《西南交通大学学报》 EI CSCD 北大核心 2012年第5期849-854,894,共7页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(51177137 61134001) 中央高校基本科研业务费专项资金资助项目(SWJTU11CX034)
关键词 多采样率数字控制系统 无迹卡尔曼滤波 状态估计 主动前轮转向 multirate digital control system unscented Kalman filter(UKF) state estimation active front steering(AFS)
  • 相关文献

参考文献14

二级参考文献157

共引文献118

同被引文献64

  • 1宗长富,郑宏宇,徐颖,刘磊.基于信息融合技术的汽车状态估计算法[J].吉林大学学报(工学版),2008,38(S2):1-4. 被引量:3
  • 2宗长富,胡丹,杨肖,潘钊,徐颖.基于扩展Kalman滤波的汽车行驶状态估计[J].吉林大学学报(工学版),2009,39(1):7-11. 被引量:45
  • 3陈祯福.汽车底盘控制技术的现状和发展趋势[J].汽车工程,2006,28(2):105-113. 被引量:77
  • 4葛哲学,杨拥民,胡政,陈仲生.非高斯噪声下基于U-粒子滤波器和似然比的非线性系统故障诊断[J].机械工程学报,2007,43(10):27-31. 被引量:7
  • 5Benjamin L P, Hosam K F, Jeffrey L S. Recursive estimation for reduced-order state-space models using polynomial chaos theory aoplied to vehicle mass estimation[J]. IEEE Transactions on .Control Systems Technology,2014,22( 1 ) :224 -229.
  • 6Hsu Lingyuan, Chen Tsunglin. Vehicle full-state estimation and prediction system using state observers[ J]. IEEE Transactions on Vehicular Technology, 2009, 58 (6) : 2651 - 2662.
  • 7Venhovens Pau J T, Naab Karl. Vehicle dynamics estimation using Kalman filters[ J]. Vehicle System Dynamics, 1999, 32(2 - 3) : 171 - 184.
  • 8Wenzel T A, Burnham K J, Blundell M V, et al. Dual extended Kalman filter for vehicle state and parameter estimation [ J]. Vehicle System Dynamics, 2006,44 ( 2 ) : 153 - 171.
  • 9Wenzel T A, Burnham K J, Blundell M V, et al. Kalman filter as a virtual sensor: applied to automotive stability system [ J]. Transactions of the Institute of Measurement and Control, 2007, 29 (2) :95 - 115.
  • 10Stephant J, Charara A, Meizel D. Virtual sensor: application to vehicle sideslip angle and transversal forces [ J]. IEEE Transaction on Industrial Electronics, 2004,51 ( 2 ) : 278 - 289.

引证文献11

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部