摘要
Since RGD peptides (R: arginine; G: glycine; D: aspartic acid) are found to promote cell adhesion, they are modified at numerous materials surface for medical applications such as drug delivery and regenerative medicine. Peptide-cell surface interactions play a key role in the above applications. In this letter, we study the adhesion force between the RGD-coated bead and Hela cell surface by optical tweezes. The adhesion is dominated by the binding of α5β1 and RGD-peptide with higher adhesion probability and stronger adhesion strength compared with the adhesion of bare bead and cell surface. The binding force for a single α5β1 -GRGDSP pair is determined to be 16.8 pN at a loading rate of 1.5 nN/s. The unstressed off-rate is 1.65 × 10^-2s^-1 and the distance of transition state for the rigid binding model is 3.0 nm.
Since RGD peptides (R: arginine; G: glycine; D: aspartic acid) are found to promote cell adhesion, they are modified at numerous materials surface for medical applications such as drug delivery and regenerative medicine. Peptide-cell surface interactions play a key role in the above applications. In this letter, we study the adhesion force between the RGD-coated bead and Hela cell surface by optical tweezes. The adhesion is dominated by the binding of α5β1 and RGD-peptide with higher adhesion probability and stronger adhesion strength compared with the adhesion of bare bead and cell surface. The binding force for a single α5β1 -GRGDSP pair is determined to be 16.8 pN at a loading rate of 1.5 nN/s. The unstressed off-rate is 1.65 × 10^-2s^-1 and the distance of transition state for the rigid binding model is 3.0 nm.
基金
supported by the National "863" Program of China (Nos. 2007AA021811 and 2007AA021809)
the National Natural Science Foundation of China (No. 31100555)
the Chinese Universities Scientific Fund (Nos. WK2030020016 and WK2030380002)