期刊文献+

基于轮廓波降噪的ISAR目标轮廓特征提取方法 被引量:4

Extraction method of target continuous contour features of ISAR imaging based on contourlet denoising process
在线阅读 下载PDF
导出
摘要 空中目标的逆合成孔经雷达(inverse synthetic aperture radar,ISAR)成像效果往往不理想,干扰杂波、成像算法能力限制等因素使得目标图像质量较差,较难从图像中提取目标的连续轮廓信息。对此,提出一种新的基于轮廓波降噪的处理方法以获得目标连续轮廓特征。首先应用轮廓波变换将复数ISAR图像变换为轮廓波系数,在轮廓波变换域分离信号与噪声并完成降噪处理,接着用优化后的轮廓波系数重建ISAR复图像,然后在实图像域将用形态学方法获得目标的初始轮廓改进为CV(Chan-Vese)模型算法的初始轮廓,最后用CV模型算法进行有限次迭代以获得目标的较优连续轮廓特征。该方法融合了轮廓波降噪技术与自适应CV模型算法,通过对真实yak42型飞机目标ISAR回波数据的试验验证了该方法的有效性和可行性。 Since interference noise and capability limit of imaging algorithm and other factors degrade image quality, it is difficult to extract target continuous contour information from the image; therefore the inverse synthetic aperture radar (ISAR) imaging effect of aerial targets is not ideal. Aiming at this problem, a new image processing method based on contourlet noise reduction is proposed to achieve clearer continuous contour features of the target. Firstly, complex ISAR image is transformed into contourlet coefficients by means of contourlet transform. The contourlet coefficients are denoised and complex ISAR image is reconstructed from the denoised contourlet coefficients. Initial contour of the target is obtained with morphology method and then Chan-Vese (CV) model method is applied to the ini- tial contour, and better continuous contour features of the target are obtained with finite iterations. The proposed method combines the contourlet noise reduction technology and adaptive CV model algorithm. Real yak42 aircraft was tested; and the ISAR echo data of the target verify the validity and feasibility of this method.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第10期2293-2300,共8页 Chinese Journal of Scientific Instrument
基金 军口863项目(2011SQ7072054) 教育部博士点基金(1020607220090142) 中国工程物理研究院院重点基金(2010A0403d7)资助项目
关键词 逆合成孔径雷达 特征提取 轮廓波 形态学 CV算法 inverse synthetic aperture radar feature extraction contourlet morphology Chan-Vese(CV) algorithm
  • 相关文献

参考文献14

  • 1何强,蔡洪,韩壮志,尚朝轩.基于非线性流形学习的ISAR目标识别研究[J].电子学报,2010,38(3):585-590. 被引量:16
  • 2李晋,皮亦鸣,杨晓波.基于微动特征提取的太赫兹雷达目标检测算法研究[J].电子测量与仪器学报,2010,24(9):803-807. 被引量:16
  • 3杜琳琳,安成锦,陈曾平.一种舰船ISAR图像中心线特征提取新方法[J].电子与信息学报,2010,32(5):1023-1028. 被引量:9
  • 4PALADINI R, MARTORELLA M, BERIZZI F. Classifica- tion of man-made targets via invariant coherency-matrix eigenvector decomposition of polarimetric SAR/ISAR im- ages [ J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49 (8):3022-3034.
  • 5ABDELMALEK T, BRIGEK H, ALI K. Using water- sheds segmentation on ISAR image for automatic target recognition [ C ]. Proceedings-2nd International Confer- ence on Digital Information Management, 2007:1.
  • 6MANIKANDAN J, VENKATARAMANI B, JAYACHAN- DRAN. Evaluation of edge detection techniques towards implementation of automatic target recognition [ C ]. Pro- ceedings - International Conference on Computational In- telligence and Multimedia Applications, 2007 : 2,2008 : 441-445.
  • 7KRISHNA N, PIOU J E. A robust state space model for the characterization of extended returns in radar target signatures [ J ]. IEEE Transactions on Antennas and Prop- agation, 2008,56 (6) : 1742-1751.
  • 8SAIDI M N, HOELTZENER B, TOUMI A, et al. Auto- matic recognition of ISAR images: Target shapes features extraction [ C ]. Proceedings- 3 rd International Conference on Information and Communication Technologies: From Theory to Applications, 2008: 2008.
  • 9SAIDI M N, DAOUDI K, KHENCHAF A, et al. Auto- matic target recognition of aircraft models based on ISAR images [ C ]. International Geoscience and Remote Sens- ing Symposium, 2009,4 : IV685-IV688.
  • 10YANG SH Y, WANG M, JIAO L CH . Radar target rec- ognition using contourlet packet transform and neural net- work approach [ J ]. Signal Processing, 2009, 89: 394-409.

二级参考文献84

  • 1侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 2刘贵喜,邵明礼,刘先红,朱东波.真实场景下视频运动目标自动提取方法[J].光学学报,2006,26(8):1150-1155. 被引量:32
  • 3李刚,邱尚斌,林凌,曾锐利.基于背景差法和帧间差法的运动目标检测方法[J].仪器仪表学报,2006,27(8):961-964. 被引量:112
  • 4徐牧,王雪松,肖顺平.基于Hough变换与目标主轴提取的SAR图像目标方位角估计方法[J].电子与信息学报,2007,29(2):370-374. 被引量:16
  • 5Ming-hsu Cheng, Meng-fen Ho, Chung-lin Huang. Gait analysis for human identification through manifold learning and HMM [J]. Pattern Recognition, 2008,41 (8) : 2541 - 2553.
  • 6M H C Law, A K Jain. Incremental nonlinear dimensionality reduction by manifold learning[ J]. WEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 ( 3 ) : 377 - 391.
  • 7J B Tenenbaum,V de Silva, J C Langford. A global geometric framework for nonlinear climensionality reduction[ J ]. Science, 2000,290(22) : 2319 - 2323.
  • 8S T Roweis, L K Saul. Nonlinear dimensionality reduction by locally linear embedding[ J ]. Science, 2000, 290(22) : 2323 - 2326.
  • 9M Belkin, P Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation[ J ]. Neural Computation, 2003, 15(6) : 1373 - 1396.
  • 10X F He, P Niyogi. Locality preserving projections[ A]. Neural Information Processing Systems16 [ C ]. Vancouver: MIT Press, 2004.153 - 160.

共引文献56

同被引文献53

  • 1王虹现.ISAR成像新方法研究[D].西安:西安电子科技大学,2011:5-9.
  • 2PENG S B, XU J, PENG Y N, et al. Inverse synthetic aperture radar rotation velocity estimation based on phase slope difference of two prominent scatterers[J]. IET radar, sonar &. navigation, 2011, 5(9) : 1002-1009.
  • 3刘宗政,何峰,叶钒,等.基于乘积型i次相位函数的ISAR转角估计方法[A].第十四届全国信号处理学术年会(CCSP-2009)论文集,2009.
  • 4Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3D transform-domain collaborative filtering [J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095.
  • 5Danielyan A, Katkovnik V, Egiazarian K. BM3D frames and variational image deblurring [J]. IEEE Transactions on Image Processing, 2012, 21(4): 1715-1728.
  • 6Dong Weisheng, Zhang Lei, Shi Guangrning, et al. Nonlocally centralized sparse representation for image restoration [J]. IEEE Transactions on Image Processing, 2013, 22(4): 1620-1630.
  • 7Xiang Shiming, Meng Gaofeng, Wang Ying, et al. Image deblurring with coupled dictionary learning [J]. International Journal of Computer Vision, 2014, 8: 1-24.
  • 8Guo Qing, Dong Fangmin, Sun Shuifa, et al. Image denoising algorithm based on Contourlet transform for optical coherence tomography heart tube image [J]. IET Image Processing, 2013, 7(5): 442-450.
  • 9Zhou Y, Wang J. Image denoising based on the symmetric normal inverse Gaussian model and non-subsampled Contourlet transform [J]. IET Image Processing, 2012, 6(8): 1136-1147.
  • 10Sadreazami H, Ahmad M O, Swamy M N S. Contourlet domain image denoising using normal inverse gaussian distribution [C]//2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE). Toronto, Canada, 2014: 1-4.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部