期刊文献+

基于主成分修整和线性判别分析的重叠故障识别 被引量:3

Identification of overlapping faults based on PCA-shaping and LDA
在线阅读 下载PDF
导出
摘要 针对在二维空间中,由变量均值偏移量较小但协方差不变所导致地故障类重叠,并因此降低故障识别率的问题,提出一种基于主成分分析(PCA)修整和线性判别分析(LDA)的新方法(PLDA).该方法通过减弱不同故障类的重叠主成分对分类的影响,达到提升LDA故障识别率的目的.对24种具有代表性故障组合的模拟样本运用10次10倍交叉验证,试验结果表明PLDA算法的平均故障识别率为94.6%,远高于传统的核化LDA算法和LDA算法的60.0%和61.9%. In two space dimensions, faults tend to overlap each other as a result of a small shift of mean of variables with the same covariance. Moreover, overlapping could reduce the rate of identifying faults. To overcome this problem, a new algorithm, called PLDA, was proposed by integrating PCA-shaping and LDA. This algorithm declined the influences of overlapping principal-components of different fault classes on classification in order to increase the rate of LDA. The result of a validation of 24 kinds of representative simulation combinations by using 10-times and 10-fold cross validations reveals the average recognizing rate of fault is 94.6 %, compared to rates of 60.0% and 61.9% of KLDA and LDA respectively.
作者 李天恩 何桢
出处 《系统工程学报》 CSCD 北大核心 2012年第5期712-718,共7页 Journal of Systems Engineering
基金 国家自然科学基金资助项目(70931004 71002105)
关键词 PCA修整 LDA 重叠故障识别 变量均值小偏移 PCA-shaping LDA identification of overlapping faults small shift of mean of variable
  • 相关文献

参考文献12

  • 1Venkatasubramanian V, Rengaswamy R, Yin K, et al. A review of process fault detection and diagnosis, Part I: Quantitative model- based methods[J]. Computers & Chemical Engineering, 2003, 27(3): 293-311.
  • 2Li Junhong, Cui Peiling. Kernel scatter-difference-based discriminant analysis for nonlinear fault diagnosis[J]. Chemometrics and Intelligent Laboratory Systems, 2008, 94(1): 80-86.
  • 3沈道义,庞彦伟,王雷,俞能海.基于遗传算法的线性判别分析方法[J].数据采集与处理,2008,23(3):327-332. 被引量:5
  • 4刘青山,卢汉清,马颂德.综述人脸识别中的子空间方法[J].自动化学报,2003,29(6):900-911. 被引量:117
  • 5卓德保,徐济超.质量诊断技术及其应用综述[J].系统工程学报,2008,23(3):338-346. 被引量:15
  • 6Chiang L H, Russell E L, Braatz R D. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, mad principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 50(2): 243-252.
  • 7Chen Zengping, Jiang Jianhui, Li Yang, et al. Fuzzy linear discriminant analysis for chemical data sets[J]. Chemometrics and Intel- ligent Laboratory Systems, 1999, 45(1/2): 295-302.
  • 8Zheng Yujie, Jian Yang, Jingyu Yang, et al. A reformative kernel Fisher discriminant algorithm and its application to face recogni- tion[J]. Neurocomputing, 2006, 69(13/15): 1806-1810.
  • 9郭均鹏,李汶华.一种区间PCA的效度分析方法[J].系统工程学报,2009,24(2):226-230. 被引量:6
  • 10Fricker R D Jr. Directionally sensitive multivariate statistical process control procedures with application to syndromic surveil- lance[J]. Advances in Disease Surveillance, 2007, 3(1): 1-17.

二级参考文献147

共引文献137

同被引文献23

引证文献3

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部