期刊文献+

不确定性热弹耦合梁的固有振动分析 被引量:2

Free vibration analysis of a thermoelastic coupled beam with material uncertainty
在线阅读 下载PDF
导出
摘要 考虑材料参数存在的不确定性,研究热弹耦合梁的固有振动特性。基于欧拉梁的振动微分方程和傅里叶定律热传导方程,得到了梁的热弹耦合振动微分方程;在给定梁的自由振动形式下求解得到梁的固有频率,并分析耦合固有频率随参考温度的变化规律;在考虑材料参数不确定情况下,分析热弹耦合耦合固有频率特性。研究结果表明考虑热弹耦合效应时,梁的各阶固有频率都有所增加;耦合固有频率随着参考温度的升高逐渐增大;考虑材料参数不确定性时,梁的各阶耦合固有频率规律复杂,但具有跟材料参数相同的分布规律。 The thermoelastic natural vibration analysis of a beam was investigated considering material uncertainty. The coupled thermoelastic vibration governing equations were derived based on the differential equations of Fourier heat conduction and transverse vibrations of an Euler beam. The effects of reference temperature on the coupled nature frequencies solved in a given form of the free vibration of the beam were studied. The properties of the coupled natural frequencies were analyzed considering material uncertainty. The results showed that the coupled natural frequencies increase with thermoelastic coupling effect considered and reference temperature; in addition, the coupled natural frequencies varying is complex, but has the similar distribution laws as those of material parameters when considering material uncertainty.
出处 《振动与冲击》 EI CSCD 北大核心 2012年第19期160-164,共5页 Journal of Vibration and Shock
基金 江苏省普通高校研究生科研创新计划资助项目(CXZZ11_0193) 南京航空航天大学基本科研业务专项科研项目(NJ2010009)
关键词 热弹耦合 不确定性 振动 耦合固有频率 thermoelastic coupling uncertainty vibration coupled natural frequency
  • 相关文献

参考文献14

  • 1杨炳渊,史晓鸣,梁强.高超声速有翼导弹多场耦合动力学的研究和进展(上)[J].强度与环境,2008,35(5):55-63. 被引量:25
  • 2史晓鸣,杨炳渊.瞬态加热环境下变厚度板温度场及热模态分析[J].计算机辅助工程,2006,15(B09):15-18. 被引量:37
  • 3王宏宏,陈怀海,崔旭利,王亮,伍特辉.热效应对导弹翼面固有振动特性的影响[J].振动.测试与诊断,2010,30(3):275-279. 被引量:30
  • 4Chitikela L N S, Eslami H, Radosta F. An analytical investigation of natural frequency for a symmetric composite box-beam with thermal effects [C]. AIAA-2011-1776.
  • 5Guo FL, Rogerson, GA. Thermoelastic coupling effect on a micro-machined beam resonator. Mechanics Research Communications, 2003, 30(6):513–518.
  • 6Sun YX, Fang DN, Soh AK. Thermoelastic damping in micro-beam resonators. International Journal of Solids and Structures, 2006, 43(10):3213–3229.
  • 7Prabhakar S, Paidoussis M P, Vengallatore S. Analysis of frequency shifts due to thermoelastic coupling in flexural-mode micromechanical and nanomechanical resonators [J]. Journal of Sound and Vibration, 2009, 323(2009): 385–396.
  • 8郭旭侠,王忠民,王砚,周银锋.耦合热弹梁的横向自由振动特性[J].西安理工大学学报,2009,25(2):184-188. 被引量:2
  • 9Guo XX, Wang ZM, Wang Y, et al. Analysis of the coupled thermoelastic vibration for axially moving beam. Journal of Sound and Vibration, 2009, 325(3):597–608.
  • 10Mahi A, Adda Bedia E A, Tounsi A, et al. An analytical method for temperature-dependent free vibration analysis of functionally graded beams with general boundary conditions [J]. Composite Structures, 2010, 92(2010): 1877–1887.

二级参考文献93

共引文献76

同被引文献27

  • 1王贡献,沈荣瀛.起重机臂架在起升冲击载荷作用下动态特性研究[J].机械强度,2005,27(5):561-566. 被引量:26
  • 2Schu~ller G I. On the treatment of uncertainties in structural mechanics and analysis [J]. Computers Structures, 2007,85 (5) : 235-343.
  • 3Li L, Sandu C. On the impact of cargo weight, vehicle parameters, and terrain characteristics on the predic tion of traction for off-road vehicles [J]. Journal of Terramechanics, 2007,44 ( 3 ) :221-238.
  • 4Sandu A, Sandu C, Ahmadian M. Modeling multi body systems with uncertainties. Part I: theoretical and computational aspects[J]. Multibody System Dy- namics, 2006,15(4) :373-395.
  • 5Sandu C, Sandu A, Ahmadian M. Modeling multi- body systems with uncertainties. Part Ⅱ, numerical applications[J]. Multibody System Dynamics, 2006, 15(3) :241-262.
  • 6An D, Choi J, Schmitz T L, et al. In situ monitoring and prediction of progressive joint wear using Bayesian statisties{-J]. Wear, 2011,270(11) :828- 838.
  • 7Hofer E, Kloos M, Krzykacz-Hausmann B, et al. An approximate epistemic uncertainty analysis approach in the presence of epistemic and aleatory uncertainties [J]. Reliability Engineering & System Safety, 2002, 77(3) :229-238.
  • 8Huang Hongzhong, Zhang Xudong. Design optimiza- tion with discrete and continuous variables of aleatory and epistemic uncertainties[J]. ASME Journal of Me chanical Design, 2009,131 (3) :310061-310068.
  • 9Nilsson N J. Probabilistic logic[J]. Artificial Intelli-gence, 1986,28(1) :71-87.
  • 10Oberkampf W L, Helton J C, Joslyn C A, et al. Chal lenge problems: uncertainty in system response given uncertain parameters [J]. Reliability Engineering System Safety, 2004,85(1) :11-19.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部