期刊文献+

混合聚烯烃热裂解动力学建模

Dynamics Modeling of Pyrolysis of Mixed Polyolefin
在线阅读 下载PDF
导出
摘要 通过混合聚烯烃在633.15~673.15K、初始反应压力6.325kPa条件下的釜式热裂解实验,考察了反应温度和反应时间对裂解反应生成的产物分布的影响,并建立了四集总动力学模型,对聚烯烃制备高附加值产品的最佳工艺条件进行了优化。结果表明,利用该模型计算得到的产物分布与实验数据吻合较好,误差较小;混合聚烯烃裂解的总表观活化能为110.4kJ/mol,指前因子(A)为2.69×107 min-1,塑料添加剂的存在一定程度上降低了反应活化能。在653.15K下混合聚烯烃裂解反应40min,重组分收率最高,达到57.2%;在673.15K下混合聚烯烃裂解反应120min,中间组分收率最高,达到57.0%。这一研究结果可为废弃塑料热裂解制备高附加值产品提供理论指导。 Pyrolysis of mixed polyolefin was carried out in an autoclave under the reaction temperatures of 633.15- 673.15 K, initial pressure of 6. 325 kPa. The influences of reaction temperature and time on the product distribution of polyolefin pyrolysis were investigated. A fourlump kinetic model was also established. Finally, the optimum process conditions were found to obtain maximum yield of value-added products. The results showed that the four-lump kinetic model fit for the pyrolysis reaction of polyolefin. The results calculated by the kinetic model agreed well with experimental data. The overall activation energy and pre-exponential factor was estimated to be 110.4 kJ/mol and 2.69 × 10^7 min^-1 for the pyrolysis of mixed polyolefin. The apparent activation energy reduced in the presence of plastic additives. The heavy fractions yield could reach its highest value of 57.2%, when the mixed polyolefin was pyrolyzed at 653.15 K for 40 min, and the middle distillate yield was up 57.0%, when the mixed polyolefin was pyrolyzed for 120 min at 673.15 K. The conclusions can provide theoretic direction for conversion of waste plastic to value-added products.
出处 《石油学报(石油加工)》 EI CAS CSCD 北大核心 2012年第5期821-826,共6页 Acta Petrolei Sinica(Petroleum Processing Section)
基金 广东省自然科学基金(9451007006004075)资助
关键词 废弃塑料 聚烯烃 添加剂 热裂解 高附加值产品 动力学模型 waste plastic polyolefin additives pyrolysis~ value-added products kinetics model
  • 相关文献

参考文献20

  • 1KIM J W, MUN T Y, KIM J O, et al. Air gasification of mixed plastic wastes using a two-stage gasifier for the production of producer gas with low tar and a high caloric value[J]. Fuel, 2011, 90(6):2266-2272.
  • 2WU C, WILLIAMS P T. Pyrolysis-gasification of plastics, mixed plastics and real-world plastic waste with and without Ni-Mg-Al catalyst[J]. Fuel, 2010, 89(10): 3022 3032.
  • 3SCHEIRS J, KAMINSKY W. Feedstock Recycling and Pyrolysis of Waste Plastics: Converting Waste Plastics Into Diesel and Other Fuels[M]. Chiehester: John Wiley & Sons, 2006.
  • 4MISKOLCZI N, ANGYAL A, BARTHA L, et al. Fuels by pyrolysis of waste plastics from agricultural and packaging sectors in a pilot scale reactor [J]. Fuel Processing Technology, 2009, 90(7-8): 1032-1040.
  • 5MILLER S J, SHAH N, HUFFMAN G P. Conversion of waste plastic to lubricating base oil[J]. Energy Fuels, 2005, 19(4): 1580-1586.
  • 6JI X, LI S Y, WANG X, et al. Study on the conversion technology of waste polyethylene plastic to polyethylene wax[J]. Energ Source, 200a, 25(1): 77-82.
  • 7LAL S, ANISIA K S, KUMAR A. Depolymerization of HDPE to wax in the presence of a catalyst formed by homonuclear macrocyclic zirconium complex chemically bonded to alumina support[J]. Applied Catalysis A: General, 2006, 303(1): 9-17.
  • 8SHAH S H, KHAN Z M, RAJA I A, et al. Low temperature conversion of plastic waste into light hydrocarbons [J]. Journal of Hazard ous Materials, 2010, 179(1-3): 15-20.
  • 9冀星,王剑秋,钱家麟.等温相继热解气相色谱法研究聚丙烯的热解[J].石油化工,1999,28(2):82-86. 被引量:4
  • 10WESTERHOUT R W, WAANDERS J, KUIPERS J A, et al. Kinetics of the low-temperature pyrolysis of polyethene, polypropene, and polystyrene modeling, experimental determination, and comparison with literature models and data[J]. Ind Eng Chem Res, 1997, 36(6): 1955-1964.

二级参考文献23

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部