期刊文献+

基于增量式学习的数据流实时分类模型 被引量:5

Model on data stream classification with incremental learning
在线阅读 下载PDF
导出
摘要 传统数据挖掘方法,主要针对静态数据进行挖掘,而对数据流挖掘往往失效。为了解决数据流的数据挖掘问题,提出一种通过改变传统支持向量机增量式学习方法,利用轮转式结构将多分类器按照数据流时间顺序进行组合,并且通过对分类器的优化,可以提高模型对数据流分类的准确率并减少训练时间消耗。实验结果表明,该模型在保证学习精度和推广能力的同时,提高了训练速度,适合于数据流在线分类和在线学的问题。 The traditional data mining method mainly is used to analyze the static data, but it is invalidation for data stream. In order to solut the problem of data stream data mining, through modifying the traditional SVM based incremental leafing, employing the cycle structure to update the multi-classifier and the classifier ordered by time. Apart from this, the optimization is applied for improving the classification accuracy and reducing time consuming. The final experimental result shows the proposed approache of SVM-based incremental learning is considerably faster than the standard SVM and the classical incremental algorithm.
作者 孙娜 郭延锋
出处 《计算机工程与设计》 CSCD 北大核心 2012年第11期4225-4229,共5页 Computer Engineering and Design
关键词 增量式学习 支持向量机 网络异常检测 概念漂移 多分类器模型 incremental learning support vector machine network intrusion detection concept drift multipleclassifier models
  • 相关文献

参考文献11

  • 1Duan H, Shao X, Hou W, et al. An incremental learning algorithm for Lagrangian support vector machines [J]. Pattern Recognition Letters, 2009, 30 (15): 1384-1391.
  • 2Liejun W, Xizhong Q, Taiyi Z. Facial expression recognition using improved support vector machine by modifying kernels [J]. Information Technology Journal, 2009, 8 (4): 595-599.
  • 3Wu F, Zhao Y. Least squares support vector machine on Morlet wavelet kernel function and its application to nonlinear system identification[J]. Information Technology Journal, 2006, 5 (3): 438-444.
  • 4FENG L, YAO Y, JIN B. Research on credit scoring model with SVM for network management [J]. Journal of Computational Information System, 2010, 6 (11): 3567-3574.
  • 5Chen Z-G, Wang S. Minimax probability machine with genetic feature optimized for intrusion detection [J]. Information Technology Journal, 2008, 7 (1): 185-189.
  • 6Xia B, Sun X, Xiang L, et al. Detection of LSB matching steganography using neighborhood node degree characteristics [J]. Information Technology Journal, 2011, 10 (8): 1601-1607.
  • 7赵耀红,王快妮,钟萍,王来生.快速支持向量机增量学习算法[J].计算机工程与设计,2010,31(1):161-163. 被引量:8
  • 8吴崇明,王晓丹,白冬婴,张宏达.利用KKT条件与类边界包向量的SVM增量学习算法[J].计算机工程与设计,2010,31(8):1792-1794. 被引量:10
  • 9Zhou L, Lai K K, Yu L. Least squares support vector machines ensemble models for credit scoring [J]. Expert Systems with Applications, 2010, 37 (1): 127-133.
  • 10Psillaki M, Tsolas I E, Margaritis D. Evaluation of credit risk based on firm performance [J]. European Journal of Operational Research, 2010, 201 (10): 873-881.

二级参考文献18

  • 1史朝辉,王晓丹,杨建勋.一种SVM增量训练淘汰算法[J].计算机工程与应用,2005,41(23):187-189. 被引量:11
  • 2李东晖,杜树新,吴铁军.基于壳向量的线性支持向量机快速增量学习算法[J].浙江大学学报(工学版),2006,40(2):202-206. 被引量:16
  • 3王晓丹,郑春颖,吴崇明,张宏达.一种新的SVM对等增量学习算法[J].计算机应用,2006,26(10):2440-2443. 被引量:21
  • 4李祥纳,艾青,秦玉平,刘卫江.支持向量机增量学习算法综述[J].渤海大学学报(自然科学版),2007,28(2):187-189. 被引量:12
  • 5Syed N A,Liu H,Sung K K.Incremental learning with support vector machines [C]. Proc Int Joint Conf on Artificial Intelligence,1999.
  • 6Jinbo Bi,Kristin Bennett.A geometric approach to support vector regression[J].Neurocomputing,2003,55:79-108.
  • 7Pavel Laskov.Incrernental support vector learning, Analysis, implementation and applications[J].Journal of Machine Learning Research,2006(7): 1909-1936.
  • 8Vapnik V N.The nature of statistical learning theory[M].2nd Ed. New York:Springer-Verlag,2000.
  • 9Kivinen J,Smola A J,Williamson R C.Online leaming with kernels[C].Cambridge,MA:Proc Advances in Neural Information Processing Systems,2002.
  • 10Zhang Y Z.Constructing multiple support vector machines ensemble based on fuzzy integral and rough reducts[C].2nd IEEE Conference on Industrial Electronics and Applications, 2007: 1256-1259.

共引文献16

同被引文献59

  • 1李秋洁,茅耀斌,叶曙光,王执铨.代价敏感Boosting算法研究[J].南京理工大学学报,2013,37(1):19-24. 被引量:3
  • 2刘以安,羊斌.关联规则挖掘中对Apriori算法的一种改进研究[J].计算机应用,2007,27(2):418-420. 被引量:53
  • 3王涛,李舟军,颜跃进,陈火旺.数据流挖掘分类技术综述[J].计算机研究与发展,2007,44(11):1809-1815. 被引量:41
  • 4EUGENIO C,DOMENICO T. Distributed data mining patterns and services: an architecture and experiments[J]. Concurrency and Computation: Practice and Experience, 2012,24(15):1 751-1 774.
  • 5ZHU X,MAHULE T, HAIMONTI D, et al. Peer-to-peer distributed text classifier learning in PADMINI[J]. Statistical Analysis and Data Mining, 2012,5(5) :446-462.
  • 6CAO L. Actionable knowledge discovery and delivery[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2012(2) : 149- 163.
  • 7KANISHKA B, KAMALIKA D, KIRK B,et al. Scalable, asynchronous, distributed eigen monitoring of astronomy data streams [J]. Statistical Analysis and Data Mining, 2011,4(3) : 336- 352.
  • 8MIRKO B. Contrast and change mining[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2011 (3) :215 -230.
  • 9LIMA H L, LEE C S. Processing Online Analytics with Classification and Association Rule Mining[J]. Knowledge Based Systems, 2010,23 (3) : 248-255.
  • 10CHEN C H,HONG T P,TSENG V S. An Improved Approach to Find Membership Functions and Multiple Minimum Supports in Fuzzy Data Mining[J]. Expert Systems with Applications, 2009,36 (6) : 10016-10024.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部