摘要
图G称为K1,n—free,若图G不包含同构于K1,n的导出子图 .设 f(x)是定义在V(G)上的非负整数函数 ,G的一个支撑子图F称为G的一个f—因子 ,若对任意的ν∈V(G)有dF(ν) =f(ν) .对K1,n—free图存在f—因子涉及到最小度条件进行了研究 ,得到了一个充分条件 .有关定理为本定理的特例 .
A graph is said to be a K 1,n—free graph,if it contains no K 1,nas an induced subgraph.Let f(x) beainteger-valued function defined on V(G).Then a spanning subgraph F of G is called a f-factor if d F(v)=f(v) for all v∈V(G).A sufficient condition depending on minimum degree for a K 1,n-free graph to have a f-factor is given,which generalizes a number of known results.
出处
《山东师范大学学报(自然科学版)》
CAS
2000年第2期121-124,共4页
Journal of Shandong Normal University(Natural Science)