期刊文献+

多幅图像的自动拼接算法研究 被引量:4

Automatic multiple images stitching algorithm research
在线阅读 下载PDF
导出
摘要 提出一种基于特征点的多幅图像自动拼接算法。根据SIFT或SURF算法在图像的尺度空间中提取特征点,对特征点进行亚像素定位,并赋予主方向。根据特征点邻域信息分布计算得到特征向量后,基于k-d树进行最近邻和次最近邻搜索,利用最近邻特征点距离与次近邻特征点距离之比得到初始匹配点对。使用RANSAC(Random Sample Consensus)算法剔除错误匹配特征点对,同时对图像之间的变换参数进行鲁棒估计,使用多频带融合算法消除拼接痕迹。实验验证了该算法能够完成多幅图像的自动无缝拼接。 This paper presents an automatic multiple images stitching algorithm based on feature points. The algorithm first extracts the SIFT or SURF feature points from the scale space of the image, then locates feature points on the sub-pixel coordinates, and gives the main orientation. Initial feature points matching can be calculated by using the k-nearest neighbor search based on k-d tree, and distance ratio of the nearest neighbor feature point and the next nearest neighbor feature point. Then using RANSAC (Random Sample Consensus) algorithm to match the initial feature points set, while transformation parameters between the two images can be estimated robustly. Seamless multi-image automatic stitching can be obtained by using multi-band blending algorithm.
作者 赵毅力
出处 《计算机工程与应用》 CSCD 2012年第34期152-157,共6页 Computer Engineering and Applications
基金 云南省应用基础研究项目(No.2011FZ013)
关键词 图像拼接 特征匹配 鲁棒估计 图像融合 image stitching feature matching robust estimation image blending
  • 相关文献

参考文献19

  • 1Li Qiaoliang, Wang Guoyou, Liu Jianguo, et al.Robust scale-invariant feature matching for remote sensing image registration[J].Geoscience and Remote Sensing Letters, 2009,6(2) :287-291.
  • 2Gramer M, Bohlken W, Lundt B, et al.An algorithm for automatic stitching of CR X-ray images[J].Advances in Medical Engineering, 2007,114(2) : 192-198.
  • 3Brown M, Lowe D.Automatic panoramic image stitch- ing using invariant features[J].International Journal of Computer Vision, 2007,74( 1 ) : 59-73.
  • 4Harris C, Stephens M.A combined corner and edge de- tector[C]//Proceedings of the Alvey Vision Conference, 1988: 147-151.
  • 5Lowe D.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision, 2004,60(2) :91-110.
  • 6Bay H,Ess A.SURF:speeded up robust featta-es[J].Com- puter Vision and Image Understanding,2008, 110(3) : 346-359.
  • 7Viola P A, Jones M J.Rapid object detection using a boosted cascade of simple features[C]//Computer Vision and Pattern Recognition, 2001 : 511-518.
  • 8Luo Juan, Oubong Gwun.A comparison of SIFT, PCA-SIFT and SURF[J].International Journal of Image Processing (IJIP) ,2010,3 (4): 143-152.
  • 9Bentley J L.Multidimensional divide and conquer[J], Communications of the ACM, 1980,23(4):214-229.
  • 10Foley T.KD-tree acceleration structures for a GPU ray- tracer[C]//Proceedings of the ACM SIGGRAPH/EURO- GRAPHICS Conference on Graphics Hardware, 2005:15-22.

二级参考文献31

  • 1程兵,郑南宁.对环境光照鲁棒的全景图拼接[J].中国图象图形学报(A辑),2003,8(2):135-139. 被引量:1
  • 2胡社教,葛西旺,陈宗海.基于角点特征的KLT跟踪全景图像拼接算法[J].系统仿真学报,2007,19(8):1742-1744. 被引量:17
  • 3S E Chen .QuickTime VR-An image-based approach to virtual environment navigation.In:Computer Graphics Proceedings,Annual Conference Series ,ACM SIGGRAPH,Los Angeles,California,1995,29~38.
  • 4L McMilliams,G Bishop,Plenoptic modeling:An image-based rendering system.In:Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Los Angeles,California,1995,39~46.
  • 5R Szeliski ,H-Y Shum.Creating full view panoramic image mosaics and environment maps.In:Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Los Angeles,California,1997,251~258.
  • 6R.Szeliski ,Video mosaics for virtual environments.IEEE Computer Graphics and Applications,March 1996:22~30.
  • 7B.S.Reddy and B.N.Chatterji,An FFT-based technique for translation ,rotation,and scale-invariant image registration,IEEE Trans.Image Processing ,1996,5(8):1266~1271.
  • 8Szeliski R.Image mosaicing for tele-reality applications.IEEE Computer Graphics and Applications,1994.(6):44~53.
  • 9Peleg S,Herman J.Panoramic Mosaics by Manifold Projiection.Proceedings of IEEE Computer Society Conference on CVPR,1997:338~343.
  • 10Y.Xiong,K Turkowski,Creating image-based VR using a self-calibrating fisheye lens.In Proc.of IEEE Conference on Computer Vision and Pattern Tecognition.

共引文献21

同被引文献38

  • 1徐正光,田清,张利欣.图像拼接方法探讨[J].微计算机信息,2006,22(10X):255-256. 被引量:25
  • 2田娟,郑郁正.模板匹配技术在图像识别中的应用[J].传感器与微系统,2008,27(1):112-114. 被引量:60
  • 3Blunt L,Ebdon S.The application of three-dimensional surface measurement techniques to characterizing grinding wheel topography[J].Int J Mach Tools Manuf,1996,36(11):1207-1226.
  • 4Hartley R,Gupta R.Linear pushbroom cameras[C]//3rd European Conference on Computer Vision,1994.
  • 5Chalermwat P,El-Ghazawi T,Le Moigne J.2-phase GA-based image registration on parallel clusters[J].Future Generation Computer Systems,2001,17(4):467-476.
  • 6Wang S,Cui C,Huang C,et al.Stitching for a large area of surface topography analysis of diamond grinding wheel[C]//International Symposium on Precision Engineering Measurement and Instrumentation,2013.
  • 7Eberhart R C,Kennedy J.A new optimizer using particle swarm theory[C]//Proceedings of the 6th International Symposium on Micro Machine and Human Science,1995.
  • 8Fischler M A,Bolles R C.Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography[J].Communications of the ACM,1981,24(6):381-395.
  • 9Zhang L P,Yu H J,Hu S X.A new approach to improve particle swarm optimization[C]//Proceedings of the Genetic and Evolutionary Computation Conference(GECCO),Chicago,IL,USA,2003:134-142.
  • 10Carlisle A,Dozier G.An off-the-shelf PSO[C]//Proceedings of the Workshop on Particle Swarm Optimization,Indianapolis,IN,2001:1-6.

引证文献4

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部