期刊文献+

基于非负稀疏嵌入投影的高光谱数据降维方法 被引量:2

Dimensionality reduction of hyperspectral data based on non-negative sparse embedding projection
原文传递
导出
摘要 针对因数据冗余及Hughes现象带来的高光谱数据分类精度降低问题,提出一种基于样本依赖排斥图的非负稀疏嵌入投影降维(NSEPSRG)算法.首先,利用非负稀疏表示方法,得到样本的非负稀疏重构权重矩阵.然后,利用样本的先验类别信息,构建样本依赖排斥图,有助于避免误分类和提高分类精度.最后,为保持每个样本间的稀疏结构关系和各样本的内在流形结构不变,根据非负稀疏重构权重矩阵和样本依赖排斥图的邻接矩阵,将样本嵌入投影到低维子空间,有助于从高维高光谱数据中提取信息量大的光谱波段,从而使得到的分类图像更清晰、平滑.AVIRIS高光谱数据上的实验结果表明,运用支持向量机对经过NSEPSRG降维处理后的高光谱数据进行分类,分类整体精度和Kappa系数分别达到了87.87%和0.856 6. In order to solve the problem of low classification accuracy of hyperspectral data which is resulted from high redundancy and Hughes phenomenon, a non-negative sparse em- bedding projection based on sample-dependent repulsion graph (NSEPSRG) algorithm is pro- posed for dimensionality reduction of hyperspectral data. At first, a non-negative sparse recon- struction weight matrix is obtained by using a non-negative sparse representation method. Then, a sample-dependent repulsion graph is constructed by taking advantage of class label in- formation, which is helpful for avoiding misclassification and improving classification accuracy. At last, in order to keep the sparse structure between samples and the inner manifold structure in each sample unchanged, high-dimensional samples are projected to a low-dimensional sub- space according to the non-negative sparse reconstruction weight matrix and the adjacency ma- trix of the sample-dependent repulsion graph, which is conducive to extracting large-scale information from high-dimensional hyperspectral data and consequently rer and smooth classification image. Experimental results on AVIRIS hyperspectr that the overall c assificatio tively in the use of support ands with tains clea- data show n accuracy and Kappa coefficient reach 87.87~/00 and 0. 856 6 respec- vector machine to classify the hyperspectral data that has been dealtwith NSEPSRG.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2012年第6期1010-1017,共8页 Journal of China University of Mining & Technology
基金 国家自然科学基金项目(60974050 61072094) 教育部新世纪优秀人才支持计划(NCET-08-0836 NCET-10-0765) 高等学校博士学科点专项科研基金项目(20110095110016) 霍英东教育基金会青年教师基金项目(121066) 中央高校基本科研业务费专项资金项目(JC111231)
关键词 高光谱数据 降维 非负稀疏表示 样本依赖排斥图 hyperspectral data dimensionality reduction non-negative sparse representationsample-dependent repulsion graph
  • 相关文献

参考文献22

二级参考文献44

  • 1HU Jie, ZHANG Yujun, LI Peng, WANG Hui, HUANG Lan & HU YuanzhongState Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China,Department of Physics, Tsinghua University, Beijing 100084, China,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.Micro-mechanical analysis of dynamic processes of nanomanipulation[J].Science China(Physics,Mechanics & Astronomy),2004,47(z1):88-92. 被引量:28
  • 2王致杰,王耀才,李冬.基于小波网络的矿井提升机运行故障趋势预测研究[J].中国矿业大学学报,2005,34(4):528-532. 被引量:13
  • 3谭炳香,李增元,陈尔学,庞勇.EO-1 Hyperion高光谱数据的预处理[J].遥感信息,2005,27(6):36-41. 被引量:131
  • 4FODOR I K, KAMATH C. Dimension reduction techniques and the classification of bent double galaxies [J]. Computational Statistics and Data Analysis, 2002, 41(11): 91-122.
  • 5JIN Z, YANG J, TANG Z, et al. A theorem on the uneorrelated optimal discriminant vectors [J]. Pattern Recognition, 2001, 34(10): 2041-2047.
  • 6JIN Z, YANG J, HU Z, et al. Face recognition based on the uncorrelated discriminant transformation [J]. Pattern Recognition, 2001, 34(7): 1405- 1416.
  • 7XIANG C, FAN X, LEE T H. Face recognition using recursive fisher linear discriminant [J]. IEEE Transactions on Image Processing, 2006, 15 (8): 2097-2105.
  • 8TAO Q, CHU D, WANG J. Recursive support vector machines for dimensionality reduction [J]. IEEE Transactions on Neural Networks, 2008, 19 (1) : 189-193.
  • 9YE J, XIONG T. Computational and theoretical analysis of null space and orthogonal linear discriminant analysis [J]. Journal of Machine Learning Research, 2006, 7(7): 1183-1204.
  • 10TAO Q, WU G, WANG J. The theoretical analysis of FDA and applications[J]. Pattern Recognition, 2006, 39(6): 1199-1204.

共引文献89

同被引文献23

  • 1朱艳,刘晓莉,杨哲海.高光谱数据的降维及Tabu搜索算法的应用[J].测绘科学技术学报,2007,24(1):22-25. 被引量:10
  • 2FATIMA S N,ABBASI N A. Distributive segmented PCA:a novel approach to hyperspectral image compression[A].Piscataway:IEEE Inc,2012.2098-2102.
  • 3LIAO W Z,PIZURICA A,SCHEUNDERS P. Semisupervised local discriminant analysis for feature extraction in hyperspectral images[J].Geoscience and Remote Sensing,2013,(01):184-198.
  • 4DALLA M M,VILLA A,BENEDIKTSSON J A. Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis[J].IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,2011,(03):542-546.
  • 5VELASCO-FORERO S,ANGULO J,CHANUSSOT J. Morphological image distances for hyperspectral dimensionality exploration using Kernel-PCA and ISOMAP[A].Piscataway:IEEE Inc,2009.109-112.
  • 6SHANG T T,JIA Y C,WEN Y,HONG S. Laplacian Eigenmaps-based polarimetric dimensionality reduction for SAR image classification[J].IEEE Transactions on Geoscience and Remote Sensing,2012,(01):170-179.
  • 7BENGIO Y,PAIEMENT J F,VINCENT P. Out-ofsample extensions for LLE,isomap,MDS,eigenmaps,and spectral clustering[A].Cambridge.MA:MIT Press,2003.184-191.
  • 8CHEN Y W,HAN X H. Classification of high-resolution satellite images using supervised locality preserving projections[J].Lecture Notes in Computer Science,2008,(01):149-156.
  • 9HE X F,CAI D,YAN S C. Neighborhood preserving embedding[A].Piscataway:IEEE Inc,2005.1208-1213.
  • 10QIAO L S,CHEN S C,TAN X Y. Sparsity preserving projections with applications to face recognition[J].Pattern Recognition,2009,(01):331-341.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部