期刊文献+

基于小波树模型的CoSaMP压缩感知算法 被引量:6

CoSaMP algorithm of compressed sensing based on wavelet tree model
在线阅读 下载PDF
导出
摘要 无线传感网络存在网络带宽限制和传感器节点的能耗问题,实际应用中通常希望可以通过重构算法从采集的少量数据中还原出原始信息,压缩感知理论为上述问题提供了一个解决思路。利用压缩感知理论,对无线传感器网络中温度传感器的监测信号进行了压缩感知的应用研究。针对传统压缩采样匹配追踪(CoSaMP)算法中测量次数多、重构精度低等问题,利用信号的小波系数所形成的连通树的结构特性,提出了基于小波树模型的压缩采样匹配追踪算法。将该算法应用到无线传感器网络监测信号的压缩感知仿真实验中,与传统压缩采样匹配追踪算法的重构性能进行比较,结果表明该算法较传统压缩采样匹配追踪算法在一定范围内对无线传感器网络中的温度信号具有更好的压缩感知性能。 Due to network bandwidth limitation and energy consumption of sensor nodes in wireless sensor networks (WSN), people usually want to reconstruct the original signal from little data in practical application. Compressed sensing (CS) theory has provided a solution for the problem above. Using CS theory, this paper launched the application research on sensed data in WSN. Aiming at the problem of more measurements and lower reconstruction accuracy in traditional CoSaMP algorithm, ex- ploiting the structure characteristic of connected wavelet tree formed by the wavelet coefficients of signal, this paper proposed CoSaMP algorithm based on wavelet tree model. Applied the proposed algorithm to simulation experiments of CS on sensed data in WSN, and compared with the CS performance of traditional CoSaMP algorithm. Comparison results show that the proposed algorithm has a better performance of CS on sensed data in WSN within a certain range.
出处 《计算机应用研究》 CSCD 北大核心 2012年第12期4530-4533,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61070182) 北京市组织部优秀人才资助项目(2010D005003000008) 北京市学科建设资助项目(PXM2012_014213_0000_74)
关键词 小波树模型 压缩采样匹配追踪 压缩感知 无线传感器网络 wavelet tree model compressive sampling matching pursuit compressed sensing wireless sensor networks
  • 相关文献

参考文献12

二级参考文献229

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献1028

同被引文献40

  • 1Donoho D L. Compressed sensing[ J]. IEEE Transactions on Infor- mation Theory, 2006, 52(4) : 1289 -1306.
  • 2Candes E J. Compressive sampling[ J]. In Proceedings of the Inter- national Congress of Mathematics, 2006,18 ( 3 ) : 1433 - 1452.
  • 3Candes E J, Romberg J, Tao T. Robust uncertainty principles [ J ]. exact signal reconstruction on Information theory, 2006,52 (2): 489 - 509.
  • 4Tropp J, Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit[ J]. IEEE Transactions on Information Theory, 2007, 53( 12): 4655-4666.
  • 5Needell D, Tropp J A. CoSaMP: iterative signal recovery from in- complete and inaccurate samples [ J ]. Applied and Computational Harmonic Analysis, 2008, 26(3): 301 -321.
  • 6Baraniuk R. A lecture on compressive sensing [ J ]. IEEE Signal Processing Magazine, 2007, 24(4):118- 121.
  • 7Donoho D, Tsaig Y. Extensions of compressed sensing [ J]. Signal Processing, 2006,86 (3) :533 - 548.
  • 8Mallat S, Zhang Z. Matching pursuit with time-frequency dictiona- ries[ J]. IEEE Transactions on Signal Processing, 1993,41 (12) : 3397 -3415.
  • 9Shen Yue, Liu Guo-hai, Liu Hui. Classification of Power Quality Disturbances based on Random Matrix Transform and Sparse Rep- resentation[ C]. Proceedings of the 8th World Congress on Intelli- gent Control and Automation,2010:6136-6141.
  • 10Donoho David L. Compressed sensing[J]. IEEE Transac- tions on Information Theory, 2006,52 (4) : 1289 - 1306.

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部