期刊文献+

四元数分析中正则函数向量的非线性边值问题 被引量:8

Nonlinear Boundary Value Problems for Regular Function Vectors in Quaternion Analysis
在线阅读 下载PDF
导出
摘要 利用积分方程的方法和Schauder不动点定理,研究了四元数分析中正则函数向量的一类带共轭和位移的非线性边值问题,得到了问题解的存在性及其积分表达式. By applying the method of intergral equations and Schauder fixed point theorem, a nonlinear boundary value problem with conjugate value and a shift for regular function vectors in quaternion analysis is considered. The existence of the solution to the problem is proved, and the integral representation of the solution is obtained.
作者 鄢盛勇
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2012年第4期24-27,共4页 Journal of South China Normal University(Natural Science Edition)
基金 四川省教育厅重点项目(09ZA091) 四川省教育厅科研基金项目(10ZC127) 四川教育学院院级科研重点项目(CJYKT10-011)
关键词 四元数分析 正则函数向量 非线性边值问题 quaternion analysis regular function vector nonlinear boundary value problem
  • 相关文献

参考文献4

  • 1GROSS F,TZE H C. Complex and quaternionic analyticity in chiral and gauge theories[ J]. Ann of Phys, 1980,128: 29 - 130.
  • 2GIRLEBECK K, SPROSSIG W. Quatemionic analysis and elliptic boundary value problem [ M ]. Boston: Birkhauser, 1990.
  • 3SUDBERY A. Quaternionic analysis[J]. Math Proc Comb Phil Soc, 1979,85 : 199 - 225.
  • 4谢永红,杨贺菊.Clifford分析中无界域上向量值函数的非线性边值问题[J].高校应用数学学报(A辑),2010(2):163-171. 被引量:6

二级参考文献8

共引文献5

同被引文献32

  • 1QIAO Yuying.A boundary value problem for hypermonogenic functions in Clifford analysis[J].Science China Mathematics,2005,48(z1):324-332. 被引量:30
  • 2鄢盛勇.四元数分析中TGf属于L_p^v(G)的性质和Pompeiu公式[J].四川师范大学学报(自然科学版),2005,28(1):5-9. 被引量:9
  • 3Gross F, Tze H C. Complex and quaternionic analyticity in chiral and gauge theories [ J ]. Ann of Phys, 1980,128: 29-130.
  • 4Gurlebeck K, Sprossig W. Quaternionic analysis and ellip- tic boundary value problem [ M ]. Boston: Birkhauser, 1990.
  • 5Sudbery A. Quaternionic Analysis [ J ], Math Proc Comb Phil Soc, 1979,85 : 199-225.
  • 6Yang P,Yang S, Li M. An initial-boundary value problem for the Maxwell equations [ J ]. J Differential Equations, 2010, 249 : 3003-3023.
  • 7Vu Thi Ngoc Ha. Higher order Teodorescu operators in quaternionic analysis related to the Helmholtz operator [ J ]. Math Nachr, 2007,280 ( 11 ) : 1268-1281.
  • 8GROSS F,TZE H C. Complex and quatemionie analyticity in ehiral and gauge theories [J]. Ann of Phys, 1980,128 : 29-130.
  • 9GURLEBECK K, SPROSSIG W. Quaternionic analysis and el- liptic boundary value problem [M]. Boston: Birkhaouser, 1990.
  • 10SUDBERY A. Quatemionic Analysis [J], Math Proc Comb Phil Soc, 1979,85= 199-225.

引证文献8

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部