期刊文献+

随机可满足实例集上警示传播算法的收敛性 被引量:11

Convergence of Warning Propagation Algorithms for Random Satisfiable Instances
在线阅读 下载PDF
导出
摘要 信息传播算法在求解随机kSAT问题时有惊人的效果,难解区域变窄.对于这种现象,至今缺少系统的理论解释.警示传播(warning propagation,简称WP)算法是一种基础的信息传播算法,为有效分析WP算法在随机kCNF公式上的收敛性,给出了随机kCNF公式因子图上圈存在的相变点.在随机kCNF公式产生模型G(n,k,p)中,取k=3,p=d/n2,因子图中圈存在的相变点为p=1/8n2.当d<1/8时,因子图中开始出现圈,且每个连通分支至多有一个圈,因子图中含圈的连通分支的数目以及圈的长度均与n无关.因此,因子图是由森林和一些含有唯一圈的连通分支构成.证明了WP算法在这些实例集上高概率收敛,并且给出了算法的迭代步数为O(logn+s),其中,s为连通分支的大小. Message propagation algorithms are very effective in finding satisfying assignments for random kSAT instances and hard regions become more narrow. Unfortunately, this phenomenon is still lacks rigorous theoretical proofs. The Warning Propagation (WP) algorithm is the most basic message propagation algorithm. In order to analysis the WP algorithm convergence for random kCNF formulas the study gives the sharp threshold point for the existence of cycles in the factor graph of random kCNF formulas, the threshold for the existence of cycles in model G(n,k,p) of random kCNF formulas is p=1/8n2 for/c=3, p=d/n2. When d becomes asymptotically equal to 1/8, cycles begin to appear, but each component contains at most one cycle, the number of the components containing a single cycle and the length of cycle are a constant independent of n. Thus, the factor graph consists of a forest of trees plus a few components that have a single cycle. Then WHP (with high probability) after at most O(logn+s) iterations, WP converges on these instances. Here s is the size of the connected component.
出处 《软件学报》 EI CSCD 北大核心 2013年第1期1-11,共11页 Journal of Software
基金 国家自然科学基金(60863005 61111130186) 贵州大学研究生创新基金(2011033)
关键词 警示传播算法 收敛性分析 相变 可满足性问题 warning propagation algorithm convergence analysis phase transition satisfiability problem
  • 相关文献

参考文献28

  • 1Bourgain J. Sharp thresholds of graph properties and the k-SAT problem. Journal of The American Mathematical Society, 1999, 12(4):1017-1054. [doi: 10.1090/S0894-0347-99-00305-7].
  • 2Kirkpatrick S, Selman B. Critical behavior in the satisfiability of random Boolean formulae. Science, 1994,264(5163): 1297-1301. [doi: 10.1126/science.264.5163.1297].
  • 3Kaporis A, Kirousis L, Lalas E. The probabilistic analysis of a greedy satisfiability algorithm. Random Structures & Algorithms, 2006,28(4):444-480. [doi: 10.1002/rsa.v28:4].
  • 4Dubois O, Boufkhad Y, Mandler J. Typical random 3-sat formulae and the satisfiability threshold. Electronic Colloquium on Computational Complexity, 2003,10(007): 1-2.
  • 5Moskewicz MW, Madigan CF, Zhao Y. Chaff: Engineering an efficient SAT solver. In: Proc. of the 38th Annual Design Automation Conf. (DAC 2001). New York: ACM, 2001. 530-535. [doi: 10.1145/378239.379017].
  • 6Aurell E, Gordon U, Kirkkpatrick S. Comparing beliefs, surveys, and random walks. Advances in Neural Information Processing Systems, 2004,17(1): 1-8.
  • 7Mezard M, Parisi G. The cavity method at zero temperature. Journal of Statistical Physics, 2003,111(1-2):1-34. [doi: 10.1023/ A: 1022221005097].
  • 8Mezard M, Zecchina R. Random k-satisifability problem: From an analytic solution to an efficient algorithm. Physical Review E, 2002,66(5):056126. [doi: 10.1103/PhysRevE.66.056126].
  • 9Maneva E, Mossel E, Wainwright M. A new look at survey propagation and its generalizations. Journal of the ACM, 2007,54(4): 1089-1098. [doi: 10.1145/1255443.1255445].
  • 10Braunstein A, Mezard M, Zecchina R. Survey propagation: An algorithm for satisfiability. Random Structures and Algorithms, 2005,27(2):201-226. [doi: 10.1002/rsa.20057].

同被引文献70

  • 1Jian-ErChen.Parameterized Computation and Complexity: A New Approach Dealing with NP-Hardness[J].Journal of Computer Science & Technology,2005,20(1):18-37. 被引量:21
  • 2邵明,李光辉,李晓维.求解可满足问题的调查传播算法以及步长的影响规律[J].计算机学报,2005,28(5):849-855. 被引量:8
  • 3许道云.极小不可满足公式在多项式归约中的应用[J].软件学报,2006,17(5):1204-1212. 被引量:24
  • 4Martin D, Alan F, Michael M. A probabilistie analysis of ran- domly generated binary constraint satisfaction[J]. Theory Com- puter Science, 2003,290 : 1815-1828.
  • 5Creignou N, Eaude H. The SAT-UNSAT transition for randomconstraint satisfaction problems [J]. Discrete Mathematics, 2009,309 : 2085-2099.
  • 6Martin O C, Monasson R, Zecchina R. Statistical mechanics methods and phase transitions in optimization[J]. Theory Com- puter Science, 2001,265 : 3-67.
  • 7Tsang E. A glimpse of constraint satisfaction[J]. Artificial Intel- ligence Review, 1999,13 : 215-277.
  • 8Bourgain J. Sharp thresholds of graph properties and the k-SAT problem[J]. Journal of The American Mathematical Society, 1999,12 (4) : 1017-1054.
  • 9Kirkpatrick S, Selman B. Critical behavior in the satisfiability of random Boolean Formulae[J]. Science, 1994,264 (5163) : 1297- 1301.
  • 10Mertens S, Mezard M, Zecchina R. Threshold values of random k-SAT from the cavity method[J]. Random Structure Algo- rithms, 2006,28 : 340-373.

引证文献11

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部