期刊文献+

稀疏分解在跟踪干扰信号特征提取中的应用 被引量:3

Application of Sparse Decomposition in Feature Extraction for Follower Jamming Signals
在线阅读 下载PDF
导出
摘要 针对跳频通信中跟踪干扰识别特征提取问题,提出了一种基于稀疏分解的跟踪干扰特征提取方法。简要介绍了稀疏分解的基本原理。根据跟踪干扰信号与跳频信号比较在时域存在时间延迟,在频域幅值大于跳频信号幅值的特点,通过对跳频信号和跟踪干扰信号进行重构,获得能表明两者之间显著差异的特征参数。仿真实验表明,该方法提取的特征参数,在信噪比大于5dB时,对跟踪干扰的识别率达到95%以上,验证了该方法的可行性和有效性。 A novel method is presented for feature extraction of follower jamming signals by using sparse decomposition technique. The basic principles of sparse decomposition are introduced. According to the difference of time delay in the time domain and amplitude in the frequency domain between the frequency hopping (FH) signals and follower jamming (FJ) signals, the marked difference feature extraction is obtained when the FH signals and FJ signals are reconstructed. The sim- ulation results show that the recognition rate of FJ can achieve 95% when the SNR is greater than 5dB, and the feasibility and effectiveness of the method is verified.
出处 《信号处理》 CSCD 北大核心 2012年第12期1714-1720,共7页 Journal of Signal Processing
关键词 稀疏分解 跳频信号 跟踪干扰信号 特征提取 时间延迟 信号重构 sparse decomposition frequency-hopping signals follower jamming signals feature extraction time delayestimation signal reconstruction
  • 相关文献

参考文献7

二级参考文献61

共引文献90

同被引文献32

  • 1赵春晖,李福昌.基于遗传算法的宽带加权子空间拟合测向算法[J].电子学报,2004,32(9):1487-1490. 被引量:10
  • 2段志强,张林让,朱永春.基于自适应天线的跳频系统干扰抑制方法[J].电波科学学报,2004,19(6):726-729. 被引量:7
  • 3Saulig N,Milanovic Z, Orovic I, et al. Entropy basedextraction and classification of frequency hopping signalsfrom their TFDs [ C ] // ELMAR, 2013 55 th InternationalSymposium. IEEE, 2013 : 169-172.
  • 4Tan B S, Teh K C,Li K H. Classification of follower/stationary interference and multitone interference/partial-band interference in slow frequency-hopping systems[ C]// Information,Communications and Signal Processing(ICICS) 2013 9th International Conference on. IEEE,2013: 1-5.
  • 5Lin C H, Fang W H. Joint angle and delay estimationin frequency hopping systems [ J ] . Aerospace andElectronic Systems, IEEE Transactions on, 2013,49(2): 1042-1056.
  • 6Sha Z C, Liu Z M,Huang Z T, et al. Online hop timingdetection and frequency estimation of multiple FH signals[J]. ETRI Journal, 2013, 35(5) : 748-756.
  • 7Han Y X, Wen J T, Cabric D,et al. Probabilistic esti-mation of the number of frequency-hopping transmitters[J]. Wireless Communications,IEEE Transactions on,2011, 10(10) : 3232-3240.
  • 8Angelosante D, Giannakis G B, Sidiropoulos N D. Esti-mating multiple frequency-hopping signal parameters viasparse linear regression [ J ]. Signal Processing,IEEETransactions on, 2010,58(10) : 5044-5056.
  • 9Wipf D P, Rao B D, Nagarajan S. Latent variable bayes-ian models for promoting sparsity [ J ]. Information Theo-ry, IEEE Transactions on, 2011,57(9) : 6236-6255.
  • 10Wipf D P, Rao B D. Sparse bayesian learning for basisselection[ J]. Signal Processing, IEEE Transactions on,2004,52(8) : 2153-2164.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部