期刊文献+

基于加速稳健特征匹配和凸集投影算法的超分辨率重建

Super-resolution sequential image reconstruction based on SURF registration method and POCS
在线阅读 下载PDF
导出
摘要 针对不理想的配准结果会导致超分辨率重建失败的问题,提出了一种基于加速健壮特征(SURF)匹配和凸集投影(POCS)的超分辨率重建算法。该算法首先采用SURF算法进行连续帧图像的配准,估计图像序列的运动位移;然后根据运动估计结果,在POCS理论框架下进行图像重建。实验结果表明,该方法能够较明显地改善图像的视觉效果,获得较丰富的细节信息,且具有较好的噪声抑制能力。 To solve the problem that imprecise registration will lead to the failure of the super-resolution reconstruction, an algorithm of super-resolution sequential image reconstruction based on Speeded Up Robust Feature (SURF) registration method and Projection Onto Convex Set (POCS) was presented. Firstly, SURF algorithm was utilized to register sequential images and estimate translational motion among various frames. Then, image reconstruction was carried out in the POCS framework. Experimental results have shown this method can obviously improve the visual effect of images and obtain rich details, also it can effectively suppress noise.
作者 张淑平
出处 《计算机应用》 CSCD 北大核心 2012年第A02期159-161,共3页 journal of Computer Applications
基金 上海市教委重点学科建设项目(J51801) 上海第二工业大学校科研基金资助项目(A20XK11X014) 上海市教育委员会科研创新项目(13YZ129)
关键词 超分辨率 凸集投影 积分图 加速稳健特征 特征匹配 super-resolution Projection Onto Convex Set (POCS) integral-image Speeded Up Robust Feature (SURF) feature matching
  • 相关文献

参考文献12

  • 1BABU R S, MURTHY K E. A survey on the methods of super-reso- lution image reconstruction [ J]. International Journal of Computer Applications, 2011,15(2) : 1 -6.
  • 2樊超,孙宁宁,夏旭.基于序列图像的超分辨率重建[J].红外技术,2010,32(5):279-282. 被引量:6
  • 3TIAN JI'NG, MA KAI-KUANG. Stochastic super-resolution image reconstruction [ J]. Journal of Visual Communication and Image Representation, 2010, 21(3) :232 -244.
  • 4万雪芬,杨义,崔剑.图像超分辨率重建处理算法研究[J].激光与红外,2011,41(11):1278-1281. 被引量:8
  • 5LOWE D G. Distinctive image features from scale-invariant key points [ J]. International Journal on Computer Vision, 2004, 60 (2):91 -110.
  • 6BAY H, TUYTELAARS T, van GOOL L. SURF: Speeded up ro- bust features[ C]//Proceedings of the 9th European Conference on Computer Vision, LNCS 3951. Berlin: Springer, 2006:404-417.
  • 7YAN KE, SUKTHANKAR R. PCA-SIFT: a more distinctive repre- sentation for local image descriptors [ C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washing- ton, DC: IEEE Computer Society, 2004, 2:506 -513.
  • 8MIKOLAJCZYK K, SCHMI D. A performance evaluation of local descriptors [ J]. International IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10) : 1615 - 1630.
  • 9BAUER J, SUNDERHAUF N, PROTZEL P. Comparing several im- plementations of two recently published feature detectors [ C/OL] it/ Proceedings of 6th IFAC Symposium on Intelligent Autonomous Ve- hicles. Toulouse, France: [ s. n. ], 2007 [ 2012- 07- 01 ]. http:// www. tu-chemnitz, de/etit/proaut/forsehung/rsre/iavOT-surf, pdf.
  • 10MIAO QUAN, WANG GUI-JIN, SH1 CHEN-BO, et al. A new framework for on-line object tracking based on SURF [ J]. Pattern Recognition Letters, 2011, 32(13) : 1564 - 1571.

二级参考文献20

  • 1Pal M. Artificial immune-based supervised classifier for classi-fication[J]. International Journal of Remote Sensing 2273-2291 land cover 2008, 29:.
  • 2S. Zhu, K. K. Ma. A new diamond search algorithm for fast block-matching motion estimation[J]. IEEE Trans. Image Processing, 2002, 9(2): 287-290.
  • 3Zhang L, Zhong Y, Huang B, et al.. A resource limited artificial immune algor-ithm for supervised classification of multi/hyper-spectral remote sensing image[J]. International Journal of Remote Sensing, 2007, 28(7): 1665-1686.
  • 4Waske B and van der Linden S. Classifying multilevel imagery from SAR and optical sensors by decision fusion[J]. IEEE Transactions on Geoscience and Remo-te Sensing, 2008, 46: 1457-1466.
  • 5Ng M K, Sze C K, Yung S P. Wavelet algorithms for deblurring models[J]. International Journal of Imaging Systems and Technology, 2004, 14: 113-121.
  • 6M Irani,S Peleg. Improving resolution by image registra- tion [ J ]. CVGIP: Graphical Models and Image Proc. , 1991,53 (5) :231 - 239.
  • 7H Stark, P Oskoui. High-resolution image recovery from image plane arrays using convex projections [ J]. J. Opt. Soc. Amer. A, 1989,6 : 1715 - 1726.
  • 8A M Tekalp, M K Ozkan, M I Sezan. High-resolution im- age reconstruction for lower-resolution image sequences and space-varying image restoration [ C ]//IEEE Interna- tional Conference on Acoustics, Speech, and Signal Pro- cessing, 1992,3 : 169 - 172.
  • 9A J Patti, M I Sezan, A M Tekalp. Super resolution video reconstruction with arbitrary sampling lattices and nonzero aperture time [ J ]. IEEE Trans. on Image Processing, 1997,6(8) :1064 - 1076.
  • 10P Cheeseman, B Kanefsky, et al. Super-resolved surface reconstruction from multiple images [ J]. NASA Technical Report, 1994,12 : FIA - 94 - 12.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部