期刊文献+

一种基于L_1范数的主成分分析优化算法及应用 被引量:1

Optimization Algorithm for L_1-norm Principal Component Analysis and Applications
在线阅读 下载PDF
导出
摘要 主成分分析(PCA)已经广泛应用于计算机视觉中,但是传统的基于L2范数的PCA对异常值和特征噪声(比如有遮挡的图像)敏感.基于L1范数的PCA(L1-PCA)相比基于L2范数的PCA更具鲁棒性,并且可以克服对异常值和特征噪声敏感的问题.然而,在应用L1-PCA算法时,其算法的优化非常关键.本文针对这一问题,提出基于增强拉格朗日乘子的L1-PCA的优化算法并将其应用于处理有遮挡图像的重构,通过在Yale人脸数据库的实验测试表明所提出的算法有效.数值和可视化的实验结果都表明优化的L1-PCA优于传统PCA. Principal component analysis(PCA) is widely used in computer vision,therefore traditional PCA based on L2 norm is sensitive to both outliers and feature noises(such as occlusions of images).Compared with L2-norm PCA,L1-norm Principal component analysis(L1-PCA)has better robustness and overcomes sensitive questions about outliers and feature noises.However,the optimization algorithm for L1-PCA application is very important.In order to solve this problem,the paper proposes the algorithm based on Augmented Lagrange Multiplier and applies it in reconstructed image against image occlusions.Extensive experiments on Yale face data sets verify the efficiency of the proposed algorithm.Both numerical and visual results show that the optimized L1-PCA is better than standard PCA.
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第1期173-176,共4页 Journal of Chinese Computer Systems
基金 2012年国家科技支撑计划项目(2012BAH08B00)资助 湖南省自然科学基金项目(06JJ50143)资助
关键词 主成分分析 L1-PCA 增强拉格朗日乘子 图像重构 principal component analysis L1-PCA augmented lagrange multiplier reconstructed image
  • 相关文献

参考文献3

二级参考文献26

  • 1张生亮,谢永华,杨静宇.一种双向压缩的二维特征抽取算法及其应用[J].计算机应用研究,2006,23(5):63-64. 被引量:8
  • 2李江,郁文贤,匡刚要,宋海娜.红外图像人脸识别方法[J].国防科技大学学报,2006,28(2):73-76. 被引量:16
  • 3Kono M, Ueki H, Umemura S. Near-Infrared Finger Vein Patterns for Personal Identification. Applied Optics, 2002, 41(35) : 7429 - 7436.
  • 4Mulyono D, Jinn H S. A Study of Finger Vein Biometric for Personal Identification//Proc of the International Symposium on Biometrics and Security Technologies. Islamabad, Pakistan, 2008 : 136 - 143.
  • 5Dai Yanggang, Huang Beining, Li Wenxin, et al. A Method for Capturing the Finger-Vein Image Using Nonuniform Intensity Infra- red Light//Proc of the Congress on Image and Signal Processing. Sanya, China, 2008, Ⅳ : 501 -505.
  • 6Miura Naoto, Nagasaka A, Miyatake T. Extraction of Finger-Vein Patterns Using Maximum Curvature Points in Image Profiles. IEEE Trans on Information and Systems, 2007, 90(8) : 1185 -1194.
  • 7Yang Jian, Zhang D, Frangi A F, et al. Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Rec- ognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131 -137.
  • 8Wang Liwei, Wang Xiao, Zhang Xuerong, et al. The Equivalence of Two Dimensional PCA and Line-Based PCA. Pattern Recognition Letters, 2005, 26 ( 1 ) : 57 - 60.
  • 9Yang Jian, Zhang D, Yang Jiang-yu. Constructing PCA baseline algorithms to reevaluate ICA-based face recognition performance [ J]. IEEE Trans. on Systems, Man, and Cybernetics, 2007,37 (4) :1015-1021.
  • 10Liu Xiao-zhang, Chen Wcn-sheng, Yucn P C, st al. Learning ker- nel-based LDA for face recognition under illumination variations[J]. IEEE Trans. on Signal Processing Letter, 2009,16(12): 1019-1022.

共引文献31

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部