期刊文献+

基于小波核函数-支持向量算法的信号检测 被引量:4

Detection of Line Spectrum Signal Detection Based on Harmonic Wavelet Kernel-Support Vector Regression Algorithm
在线阅读 下载PDF
导出
摘要 关于水声信号检测优化问题,对在极低信噪比情况下被背景噪声所淹没的微弱信号进行检测时,由于舰船航行时接收目标信号的噪声较大,使检测更加困难。通过对谐波小波变换和支持向量回归算法的分析,在谐波小波函数的窄带信号分析支持向量回归基础上,提出了一种谐波小波核函数-支持向量回归的信号检测算法,实现小样本情况下微弱信号的检测。通过仿真信号和海上实测噪声数据的分析,利用改进算法可以很好地检测出在极低信噪比情况下噪声背景中的微弱信号,从而验证了改进算法在低信噪比情况下检测线谱信号的有效性。 To detection the weak signal under low SNR, based on the narrow-band signal analysis capability of the Harmonic Wavelet Function, and combined with the support vector regression, the Harmonic Wavelet Kernel Support Vector Regression algorithm was proposed for detecting the line spectrum signals under the condition of small samples. The simulation results with measured noise data show that the algorithm can detect the line spectrum signal in the Gaussian noise background effectively under the condition of small samples.
作者 周有 侯铁双
出处 《计算机仿真》 CSCD 北大核心 2013年第1期263-267,共5页 Computer Simulation
基金 陕西省教育厅科研计划项目资助(2010JK841 2011JK0937)
关键词 谐波小波函数 支持向量回归 线谱信号 信号检测 Harmonic wavelet function Support vector regression Line spectrum signal Signal detection
  • 相关文献

参考文献8

  • 1Vladimir N Vapnik. The Nature of Statistical Learning Theory[M].New York:springer-verlag,1995.
  • 2J L Rojo-Alvarez,M Martinez-Ramon,A R Figneiras-Vidal,A Artes-Rodriguez. A Robust Support Vector Algorithm for Nonparametric Spectral Analysis[J].IEEE Signal Processing Letters,2003,(10):320-323.
  • 3Sun Bing-Yu,Huang De-Shuang,Fang Hai-Tao. Lidar Signal Denoising Using Least-Squares Support Vector Machine[J].IEEE Signal Processing Letters,2005,(02):101-104.
  • 4A Mumtaz,S A M Gilani,T Jameel. A Novel Color Image Retrieval System Based On Dual Tree Complex Wavelet Transform and Support Vector Machines[A].2006.163-168.
  • 5侯铁双,相敬林,韩鹏,石杰.基于IRWLS支持向量拟合的线谱检测算法[J].电声技术,2010,34(4):47-49. 被引量:6
  • 6DE Newland. Harmonic Wavelet Analysis[J].Proceedings of the Royal Society A:Mathematical,Physical & Engineering Sciences,1993.203-225.
  • 7Berhard Scolkopf,Alexander J Smola. Learning with Kernels-Support Vector Machines,Regularization,Optimization,and Beyond[M].The MIT Press,Cambridge Massachusettes,London,England,2002.
  • 8Cesar C Gaudes,Javier Via,Ignacio Santamaria. Robust Array Beamforming with Sidelobe Control Using Support Vector Machines[J].IEEE Transactions on Signal Processing,2007,(02):574-584.

二级参考文献9

  • 1杨兴明,张培仁,丁学明,屠运武,孙丙宇,陈锐锋.基于SVM和相干平均去噪的大坝位移检测方法[J].中国科学技术大学学报,2005,35(2):208-213. 被引量:1
  • 2李启虎.第一讲 进入21世纪的声纳技术[J].物理,2006,35(5):402-407. 被引量:16
  • 3张翔,刘晓敏,肖小玲,胡文宝.基于支持向量机回归的去噪方法及其应用[J].工程地球物理学报,2005,2(3):191-194. 被引量:9
  • 4VAPNIK V N.The nature of statistical learning theory[J].New York:Springer-Vedag,1995.
  • 5ROJO-ALVAREZJL,MARTINEZ-RAMONM,FIGUEIRASVIDAL A R,et al.A robust support vector algorithm for nonparametric spectral analysis[J].IEEE Signal Processing Letters,2003,10 (10):320-323.
  • 6TUNTISAK S,PREMRUDEEPREECHACHARN S.Harmonic detection in distribution systems using wavelet transform and support vector machine[C]// Power Tech 2007,IEEE Power Engineering Society.Lausanne:[s.n.],2007:1540-1545.
  • 7SUN Bingyu,HUANG De-Shuang,FANG Haitao.Lidar signal denoising using least-squares support vector machine[J].IEEE Signal Processing Letters,2005,12(2):101-104.
  • 8ROJO-ALVAREZ J L,BARQUERO-PEREZ O,MORAJIMENEZ I,et al.Heart rate turbulence denoising using support vector machines[J].IEEE Trans.on Biomedical Engineering,2009,56(2):310-319.
  • 9Mumtaz A,Gilani S A M,Jameel T.A novel color image retrieval system based on dual tree complex wavelet transform and support vector machines[C]// Proceedings of Muhitopic Conference,2006.INMIC '06 Islamabad:Robotics &Intelligent Computing Group,Computer Science Department,LUMS,2006:163-168.

共引文献5

同被引文献29

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部