期刊文献+

基于稀疏表示的故障敏感特征提取方法 被引量:22

Sensitive Feature Extraction of Machine Faults Based on Sparse Representation
在线阅读 下载PDF
导出
摘要 针对故障诊断中的特征选择问题,提出一种基于非负稀疏表示的低维敏感特征提取方法。为了增强主分量的可解释性,针对L1-范数优化目标,通过权系数的稀疏和非负约束实现非负稀疏主分量的提取。采用主分量特征的累积方差变化率自适应地确定稀疏度,并依据稀疏分量与原始特征少关联的需求确定稀疏分量的数目,实现敏感特征的优化提取。通过仿真数据的分析表明,非负稀疏分量不仅提取出描述原始数据分布的敏感特征,还提高了数据的聚类性能。将该方法应用于滚动轴承的多种故障状态识别中,在由非负稀疏主分量构成的特征空间中,数据的聚类效果优于主分量特征空间;综合分析稀疏参数的选取和敏感特征的提取过程,表明提出的稀疏表示方法不仅能自适应地确定稀疏度,还能有效地获取原始特征的敏感程度,为故障诊断特征提取提供了很好的解决方案。 To treat the feature selection for mechanical fault diagnosis, a novel method is proposed to find the low-dimensional non-negation sparse principal component representations from the feature set of the measured signals. In facilitating the interpretation of the extracted principal components, combine non-negative and sparse constraints with the Ll-norm variance, the non-negative sparse components can be selected. The cumulative percentage of variance explained is used to select the optimal spa'rsity of the principal components, and the number of principal components is decided by the demand of sparsity in fault diagnosis. The experimental results from simulation data and the ball bearing vibration analysis show that the proposed method is more effective for machine fault diagnosis than principal component analysis method. Analysis of the optimal sparsity parameters and the sensitive features, suggests that the proposed method not only self-adaptively obtains the degree of sparsity, but also effectively determines the sensitivity of the original features.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2013年第1期73-80,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金(51075323) 中央高校基本科研业务费专项资金(xjj20100066)资助项目
关键词 稀疏表示 主分量分析 特征提取 故障诊断 Sparse representation Principle component analysis Feature extraction Fault diagnosis
  • 相关文献

参考文献12

  • 1雷亚国,何正嘉,訾艳阳,胡桥,丁锋.混合聚类新算法及其在故障诊断中的应用[J].机械工程学报,2006,42(12):116-121. 被引量:16
  • 2ZHANG L,JACK L B, NANDI A K. Fault detectionusing genetic progranuning[J]. Mechanical Systems andSignal Processing,2005, 19(2) : 271-289.
  • 3WANG Huaqing,LIKe,SUN Hao,CHEN Peng.Feature Extraction Method Based on Pseudo-Wigner-Ville Distribution for Rotational Machinery in Variable Operating Conditions[J].Chinese Journal of Mechanical Engineering,2011,24(4):661-668. 被引量:9
  • 4LIU Xiaofeng QIN Shuren BO Lin.HYBRID WAVELET PACKET-TEAGER ENERGY OPERATOR ANALYSIS AND ITS APPLICATION FOR GEARBOX FAULT DIAGNOSIS[J].Chinese Journal of Mechanical Engineering,2007,20(6):79-83. 被引量:6
  • 5WIDODO A, YANG B,HAN T. Combination ofindependent component analysis and support vectormachine for intelligent faults diagnosis of inductionmotors [J]. Expert Systems with Applications, 2007,32(2): 299-312.
  • 6MALHI A, GAO R X. PCA-based feature selectionscheme for machine defect classification^]. IEEETransaction on Instrumentation and Measurement, 2004,53(6): 1517-1525.
  • 7JOLLIFFE I T, TRENDAFILOV N T,UDDIN M. Amodified principal component technique based on theLASSO[J]. Journal of Computational and GraphicalStatistics, 2003,12(3): 531-547.
  • 8D,ASPREMONTA,GHAOUILE, JORDAN M I, et al.A direct formulation for sparse PCA using semidefiniteprogramming[J]. SIAM Review, 2007, 49(3): 434-448.
  • 9ZOUH, HASTIE T, TIBSHIRANI R. Sparse principalcomponent analysis[J]. Journal of Computational andGraphical Statistics,2006,15(2): 265-286.
  • 10ZASS R, SHASHUA A. Nonnegative sparse PCA[J].Advances in Neural Information Processing Systems,NIPS, 2007(19): 1561-1568.

二级参考文献47

  • 1刘小芳,曾黄麟,吕炳朝.部分监督加权模糊C-均值算法的聚类分析[J].计算机仿真,2005,22(3):114-116. 被引量:9
  • 2JOHN G H, KOHAVI R, PFLEGER K. Irrelevanl features and the subset selection problem[C]//Machine Learning: Proceedings of the Eleventh International Conference, 1994: 121-129.
  • 3BLAKE C L, MERZ C J. UCI repository of machine learning databases[EB/OL]. [2007-05-17]. http: //www. ics.uci, edu/-mleam/MLRepository.html.
  • 4NOWICKI R, SLOWINSKI R, STEFANOWSKI J. Evaluation of vibroacoustic diagnostic symptoms by means of the rough sets theory[J]. Knowledge Engineering: Elsevier Computers in Industry, 1992, 20: 141-152.
  • 5COHEN L. Time-Frequency Analysis [M]. New Jersey: Prentice- Hall, 1995.
  • 6WANG H Q, CHEN E intelligent diagnosis method for a centrifugal pump using features of vibration signals [J]. Neural Computing & Application, 2009, 18(4): 397-405.
  • 7WU J D, LIU C H. Investigation of engine fault diagnosis using discrete wavelet transform and neural network [J]. Expert Systems with Applications, 2008, 35(3): 1 200 1 213.
  • 8WU J D, HSU Chuang Chin. Fault gear identification using vibration signal with discrete wavelet transform technique and fuzzy-logic inference [J]. Expert Systems with Applications, 2009, 36(2): 3 785-3 794.
  • 9ZHU Z K, YAN R Q, LUO L H, et al. Detection of signal transients based on wavelet and statistics for machine fault diagnosis [J]. Mechanical Systems and Signal Processing, 2009, 23(4): 1 076-1 097.
  • 10TSE W P, PENG Y H, YAM Richard. Wavelet analysis and envelope detection for rolling element bearing fault diagnosis-their effectiveness and flexibilities [J]. Journal of Fibration and Acoust, 2001, 123: 303-311.

共引文献35

同被引文献162

引证文献22

二级引证文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部