期刊文献+

立体神经视觉系统中零件识别的学习方法

Learning Mechanism for Parts Recognition in Stereoscopic Neuro-vision System
在线阅读 下载PDF
导出
摘要 提出了一种立体神经视觉系统中零件识别的学习方法 ,与标准的BP算法对比有两点改进 :①用变尺度方向代替负梯度方向作为搜索方向 ;②用可变的最优学习率来代替不变的学习率 .采用上述 2个改进后 ,训练速度和收敛性都有较大的改善 .实际应用表明 ,所提出的学习方法的训练速度。 A learning mechanism for parts recognition(LMPR) in a stereoscopic nuro vision system is presented. It differs from the mechanism used in the standard back propagation (SBP) neural network in two ways. First, the searching direction is changed from the negative gradient direction to the variable metric direction. Secondly, the constant learning rate is changed to a variable optimal learning rate. With the combination of variable metric direction and variable optimal learning rate, the speed of the training process is greatly improved and the convergence is assured. Application examples are presented. The results have indicated that the proposed LMPR is superior in comparison with the SBP in the areas of learning speed, convergence and stability.
作者 熊银根
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2000年第3期25-29,共5页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 广东省博士后基金资助项目
关键词 立体神经视觉 学习方法 神经网络 零件识别 装配 stereoscopic neuro vision learning mechanism neural networks variable metric direction variable optimal learning rate
  • 相关文献

参考文献2

  • 1Huang S H,Computer Industry,1995年,26卷,107页
  • 2Xu H Y,Expert System Applications,1992年,5卷,25页

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部