摘要
设f为一个算术函数,S={x1,…,xn}为一个n元正整数集合.称S为gcd-封闭的,如果对于任意1≤i,j≤n,均有(xi,xj)∈S.以S={y1,…,ym)表示包含S的最小gcd-封闭的正整数集合.设(f{xi,xj))表示一个n×n矩阵,其(i,j)项为f在xi与xj的最大公因子(xi,xj)处的值.设(f[xi,xj])表示一个n×n矩阵,其(i,j)项为f在xi与xj的最小公倍数[xi.xj]处的值.本文证明了。(i)如果f∈Cs={f:(f*μ)(d)>0,x∈S,d|x}这里f*μ表示f与μ的Dirichlet来积,μ表示Mobius函数,那么并且(1)取等号当且公当S=(ii)如果f为乘法函数,并且1/f∈Ca,那么并且(2)取等号当且仅当S=。不等式(1)和(2)分别改进了Bourque与Ligh在1993年和1995年所得到的结果。#且(1)$$95llttgS-g;(n)toilk#ffed数,#if}。C。,W4并且问取等号当且仅当S一S.
出处
《数学年刊(A辑)》
CSCD
北大核心
2000年第3期377-382,共6页
Chinese Annals of Mathematics
基金
中国博士后科学基金