期刊文献+

结合遗传算法和蚁群算法的高光谱图像波段选择 被引量:38

Band selection for hyperspectral imagery based on combination of genetic algorithm and ant colony algorithm
原文传递
导出
摘要 随着遥感技术和成像光谱仪的发展,高光谱遥感图像的应用越来越广泛,但其自身的特点给高光谱图像的分类、识别等带来了很大的困难。如何快速地从高达数百个波段的高光谱图像中选择出具有较好分类识别能力的波段组合是亟待解决的问题。针对上述问题分析了已有的波段选择方法,提出一种结合遗传算法和蚁群算法的高光谱图像波段选择方法。该算法首先利用遗传算法以较快的寻优能力获得几组较优解,以此来初始化蚁群算法的初始信息素列表,然后用蚁群算法以较高的求精解能力获得最优解,并且在遗传算法部分中采用四进制的编码方式,使得算法编/译码简单、遗传算子操作简捷、且处理时所占空间小,同时在蚁群算法部分中巧妙地对预处理图像进行子空间划分来缩小蚂蚁搜索的范围,提高了算法的搜索效率,减小了输出波段组合的相关性和冗余度。由于该算法充分地吸取遗传算法和蚁群算法的优点、克服各自的缺陷,是一种计算耗时少、收敛性能好的波段选择方法。利用AVIRIS(airborne visible infrared imaging spectrometer)图像对提出的算法进行实验,实验结果表明,本文算法在所选波段性能和计算耗时方面都获得令人满意的效果。 With the development of remote sensing technology and imaging spectrometer, hyperspectral remote sensing images are widely used. However, the features of hyperspectral images have brought great difficulties for its classification and identification. One important research question is " How to select a group of bands from hundreds of bands of hyperspeetral images, which are good for classification and identification?" In view of the above question, the existing band selection methods are analyzed, and a new method of hyperspectral imagery band selection is proposed, which is combined with genetic algorithm and ant colony algorithm. In the algorithm, the genetic algorithm is used to search for some better solutions quickly which initialize the information list of the ant colony algorithm. Then, the ant colony algorithm can effectively search for the best solution. In the part of the genetic algorithm, quaternary encoding is used, which makes encoding/decoding and genetic operation simple and uses less memory. In the part of the ant colony algorithm, subspace division is used to deal with hyperspectral images, reducing the search range of the ants. Which improves the search efficiency, and reduces the correlation and redundancy of the output band of hyperspectral image. The algorithm makes good use of the advantages of both genetic algorithm and ant colony algorithm and overcomes their defects, by consuming less time and outperfoming restraining method for band selection. An AVIRIS image was used for experiment with the proposed algorithm, which proves that this algorithm of hyperspectal dimension reduction is effective in terms of band selection performance and execution time consumption.
出处 《中国图象图形学报》 CSCD 北大核心 2013年第2期235-242,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(60802059 61275010) 教育部博士点新教师基金项目(200802171003)
关键词 高光谱图像 波段选择 遗传算法 蚁群算法 hyperspectral imagery band selection genetic algorithm ant colony algorithm
  • 相关文献

参考文献8

二级参考文献54

  • 1赵春晖,刘春红.超谱遥感图像降维方法研究现状与分析[J].中国空间科学技术,2004,24(5):28-36. 被引量:19
  • 2张丽新,王家钦,赵雁南,杨泽红.机器学习中的特征选择[J].计算机科学,2004,31(11):180-184. 被引量:18
  • 3刘春红,赵春晖,张凌雁.一种新的高光谱遥感图像降维方法[J].中国图象图形学报(A辑),2005,10(2):218-222. 被引量:82
  • 4王立国,谷延锋,张晔.基于支持向量机和子空间划分的波段选择方法[J].系统工程与电子技术,2005,27(6):974-977. 被引量:13
  • 5JAIN A, ZONGKER D. Feature selection: evaluation, application, and small sample performance[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997,19 (2) : 153-158.
  • 6WARNER T, SHAND M. Spatial autocorrelation analysis of hyperspectral imagery for feature sel_ection[ J]. Remote Sensing of the Environment, 1997,60:58-70.
  • 7KIRA K, RENDELL L A. The feature selection problem:traditional methods and a new algorithm[ C]//Proc of the 9th National Conf oh AI. 1992 : 129-134.
  • 8SEBASTIANO B S ,BRUZZONE L. A new search algorithm tor feature selection in hyperspectral remote sensing images[ J]. IEEE Trans on Geoscience and Remote Sensing,2001,39 (7) :1360-1367.
  • 9KOLLER D,SAHAMI M. Toward optimal feature selection[ C]//Proc of Int' l Conf on Machine Learning. 1996:284-292.
  • 10DASH M, LIU H. Feature selection for classification [ J]. Intelligent Data Analysis,1997 ,1 (3) :131-156.

共引文献48

同被引文献370

引证文献38

二级引证文献361

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部