期刊文献+

微接触印刷技术在ITO基底上快速转移Au纳米粒子图案 被引量:4

Rapid Transfer of Au Nanoparticle Pattern onto ITO Substrate Using Microcontact Printing Technique
在线阅读 下载PDF
导出
摘要 采用无氰化学镀金法在聚二甲基硅氧烷(PDMS)印章表面镀金,通过微接触印刷技术将PDMS印章上的Au纳米粒子(AuNPs)分别转移到氧化铟锡(ITO)透明导电膜玻璃,修饰了(3-巯基丙基)三甲氧基硅烷(MPTMS)的ITO基底(MPTMS/ITO)和表面电镀了铜膜的ITO(Cu/ITO)表面上,同时形成有序的结构或者图案.通过场发射扫描电镜(FE-SEM),原子力显微镜(AFM)和显微共聚焦激光拉曼光谱仪等对实验结果进行表征.结果表明,该转移AuNPs的方法对基底表面特性并无特殊要求,是一种简单、快速、无污染、低成本的AuNPs转移技术,而且转移了AuNPs的ITO基底具有表面增强拉曼光谱(SERS)活性,有望在SERS中有所应用. A poly(dimethylsiloxane) (PDMS) stamp was electrolessly plated using a cyanide-free solution.Gold nanoparticles (AuNPs) were transferred from the PDMS stamp to indium tin oxide (ITO),(3mercaptopropyl) trimethoxysilane modified ITO (MPTMS/ITO),and an ITO substrate electrodeposited with a thin copper film (Cu/ITO).AuNPs formed well-ordered structures which were characterized by field emission scanning electron microscopy (FE-SEM),atomic force microscopy (AFM),and Raman spectroscopy.Microcontact printing allowed thin AuNPs films to be directly transferred from PDMS to substrate,so is a simple,fast,cheap and environmentally-friendly technique.AuNPs patterned on the ITO substrate exhibited surface-enhanced Raman spectroscopy (SERS) activity which will be investigated in subsequent studies.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2013年第3期612-618,共7页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(21173048,21073038)资助项目~~
关键词 微接触印刷技术 金纳米粒子 转移 聚二甲基硅氧烷 表面增强拉曼光谱 Microcontact printing Gold nanoparticle Transfer Poly(dimethylsiloxane) Surfaceenhanced Raman spectroscopy
  • 相关文献

参考文献1

二级参考文献3

共引文献8

同被引文献27

  • 1Zhou Y, Loh K P. Making patterns on graphene[J]. Advanced Materials, 2010, 22(32): 3615-3620.
  • 2Han M Y, ?zyilmaz B, Zhang Y B, et al. Energy band-gap engineering of graphene nanoribbons[J]. Physical Review Letters, 2007, 98(20): 206805.
  • 3Zhou Y, Bao Q, Varghese B, et al. Microstructuring of graphene oxide nanosheets using direct laser writing[J]. Advanced Materials, 2010, 22(1): 67-71.
  • 4Liang X G, Fu Z L, Chou S Y. Graphene transistors fabricated via transfer-printing in device active-areas on large wafer[J]. Nano Letters, 2007, 7(12): 3840-3844.
  • 5Devadas B, Rajkumar M, Chen S M, et al. Electrochemically reduced graphene oxide/neodymium hexacyanoferrate modified electrodes for the electrochemical detection of paracetamol[J]. International Journal of Electrochemical Science, 2012, 7: 3339-3349.
  • 6Liu J Q, Yin Z Y, Cao X H, et al. Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes[J]. ACS Nano, 2010, 4(7): 3987-3992.
  • 7Robinson J T, Perkins F K, Snow E S, et al. Reduced graphene oxide molecular sensors[J]. Nano Letters, 2008, 8(10): 3137-3140.
  • 8Becerril H A, Mao J, Liu Z F, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors[J]. ACS Nano, 2008, 2(3): 463-470.
  • 9Wang Z J, Zhou X Z, Zhang J, et al. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase[J]. The Journal of Physical Chemistry C, 2009, 113(32): 14071-14075.
  • 10Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部