期刊文献+

一类新的带非单调线搜索的信赖域算法

A New Family of Trust Region Algorithms with a Non-monotone Line Search Technique
在线阅读 下载PDF
导出
摘要 通过将传统的信赖域算法和非单调Wolfe线搜索结合,提出了一类新的求解无约束优化问题的信赖域算法.新算法给出了新的Wolfe步长准则,通过新的Wolfe步长准则可选择一个较大的步长,这样就减少了算法迭代的次数,提高了算法的有效性;并在一定的条件下,证明了算法的全局收敛性. We propose a new family of region algorithms for unconstrained optimization problems which is combining traditional trust region method with a non-monotone Wolfe line search technique. A new algorithm that possibly chooses a larger step-length. This can decrease the number of iterations and can improve the efficiency of the algorithms. The global convergence of the algorithms is proved under certain conditions.
作者 曾宪廷
出处 《滨州学院学报》 2012年第6期77-83,共7页 Journal of Binzhou University
基金 国家自然科学基金资助项目(11171180)
关键词 信赖域算法 非单调线搜索 全局收敛 trust-region method ~ non-monotone line search global convergence
  • 相关文献

参考文献18

  • 1Nlcedal J, Yuan Y X. Combining trust region and linear search techniques[R]. Technical Report,NAM06,Dept of Computer Science,Northwestern University Illinois,USA,1991.
  • 2Nlcedal J, Yuan Y X. Combining trust region and linear search techniques[J], Advances in Nonlin-ear Programming,1998:153 - 175.
  • 3Michael Gertz E. A quasi-Newton trust-region method[J]. Mathematical Programming, 2004,100(3).447 - 470.
  • 4Deng N Y,Xiao Y, Zhou F J. A nonmonotonic trust region algorithm[J], Journal of optimizationTheory and Applications, 1993,76(2) :259 - 285.
  • 5李正锋,邓乃扬.一类新的非单调信赖域算法及其收敛性[J].应用数学学报,1999,22(3):457-465. 被引量:32
  • 6Toint P. A non-monotonic trust-region algorithm for nonlinear optimization subject to convex con-strains[J], Mathematical Programming, 1997,77(1) :69 - 94.
  • 7柯小伍,韩继业.一类新的信赖域算法的全局收敛性[J].应用数学学报,1995,18(4):608-615. 被引量:31
  • 8庞善民,陈兰平.一类带非单调线搜索的信赖域算法[J].计算数学,2011,33(1):48-56. 被引量:2
  • 9Masoud Ahookhosh, Key van Amini.Somayeh Bahrami. A class of nonmonotone Armijo-type linesearch method for unconstrained optimization[J]. Optimization,2012,61(4) :387 - 404.
  • 10Grippo L, Lampariello F, Lucidi S. A non-monotone line search technique for Newton’s method[J]. SIAM J,Numer Anal,1986,23(4) :707 - 716.

二级参考文献22

  • 1柯小伍,韩继业.一类新的信赖域算法的全局收敛性[J].应用数学学报,1995,18(4):608-615. 被引量:31
  • 2Broyden C G. The Convergence of Class of Double Rank Minimization Algorithms,Parts Ⅰ and Ⅱ[J]. Journal of the Institute of Mathematics and Applications, 1970,6:76-90.
  • 3Fletcher R. A New Approach to Variable Metric Algorithms[ J ]. Computer Journal, 1970,13:317-322.
  • 4Goldfarb D. A Family of Variable Metric Methods Derived by Variational Means [ J ]. Mathematics of Computation, 1970,24:23-26.
  • 5Shanno D F. Conditioning of Quasi-Newton Methods for Function Minimization [ J ]. Mathematics of Computation, 1970,2:647-656.
  • 6Xu Chengxian,Zhang Jiangzhong. A Survey of Quasi-Newton Equation and Quasi-Newton Methods with Modified Quasi-Newton Equations[J]. Annals of Operations Research,2001,103:213-234.
  • 7Zhang J Z,Xu C X. Properties and Numerical Performance of Quasi-Newton Methods with Modified Quasi-Newton Equations[J]. Journal of Computational and Applied Mathematics,2001,137:269-278.
  • 8Sun W Y ,Yuan Y X . Optimization Theory and Methods[ M]. New York:Springer Science Business Media,LLC,2006: 303 -324.
  • 9More J J, Garbow B S, Hillsyrom K E. Testing Unconstrained Optimization Software[J]. ACM Transactions on Mathmatical Software, 1981,7 : 17-41.
  • 10E Michael Gertz. Combination trust-region line search methods for unconstrained optimization[R]. University of California San Zdiego, 1999.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部