期刊文献+

多小波自适应分块阈值降噪及其在轧机齿轮故障诊断中的应用 被引量:30

Multiwavelet denoising with adaptive block thresholding and its application in gearbox diagnosis of rolling mills
在线阅读 下载PDF
导出
摘要 为有效提取关键设备淹没在强背景噪声中的微弱故障特征,提出了一种多小波自适应分块阈值降噪方法,并将其成功应用于轧机齿轮箱故障诊断中。小波降噪的效果主要取决于小波函数和阈值的合理选择。多小波具有多个尺度函数和小波函数,可以同时满足紧支性、对称性、正交性以及高阶消失矩等优良性质,使其在早期故障和微弱故障诊断中颇具优势。针对多小波变换系数之间的相关性,在估计真实特征值时以Stein无偏风险估计最小作为约束条件,自适应地选取最优的邻域分块长度和阈值,能够在准确提取故障特征的同时有效消除噪声干扰。仿真信号验证了方法的有效性,轧机齿轮箱的诊断结果表明,该方法可以有效提取出齿轮箱高速小齿轮存在由于高温熔焊导致的两处局部胶合破坏故障。 In order to efficiently extract weak fault features of key equipments immersed in strong background noise, a multi- wavelet denoising method with adaptive block thresholding is proposed and it is applied to gearbox fault diagnosis of the rolling mills. The effect of wavelet denoising mainly depends on the optimal selection of wavelet functions and threshold. Muhiwave lets have more than two muhiscaling functions and multiwavelet functions. They possess such properties as orthogonality, symmetry, compact support and high vanishing moments simultaneously. Therefore, muhiwavelets are extensively used for fault diagnosis of incipient faults and weak faults. Based on the correlation of muhiwavelet coefficients, this paper uses the minimum principle of Stein's unbiased risk estimate to estimate the true fault features. The optimal block length and threshold are selected for effective feature extraction and noise elimination at each decomposition level. The simulation signal validates the effectiveness of the proposed method, the gearbox fault diagnosis of the rolling mills indicates that the proposed method carl successfully detect two local scuffing fault features of the pinion simultaneously.
出处 《振动工程学报》 EI CSCD 北大核心 2013年第1期127-134,共8页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(51275384 51035007) 国家重点基础研究发展计划973项目(2009CB724405) 高等学校博士学科点专项科研基金资助项目(20110201130001)
关键词 故障诊断 齿轮 多小波 无偏风险估计 信号降噪 fault diagnosis gears multiwavelet Stein' s unbiased risk estimate signal denoising
  • 相关文献

参考文献19

  • 1Yuan J, He Z J, Zi Y Y. Gear fauh delection using customized muhiwavelet lifting schemes [J]. Mechan- ical System and Signal Processing, 2010, 2,1 ( 5 ): 1 509-1 528.
  • 2Donoho D L. De-nosing by soft thresholding [J].IEEE Transactions on Information Theory, 1.995, 41 (3): 613-627.
  • 3Strela V, Heller P N, Strang G, et al. The application of muhiwavelel fiherbanks of image processing [J].IEEE Transactions on Signal Processing, 1999, 8(4) : 548-563.
  • 4Khadem S E, Rezaee M. Development of vibration signature analysis using muhi wavelets systems [J]. Journal of Sound and Vibration, 2003, 261: 613-633.
  • 5Donoho D L, .Johnstone I M. Ideal spatial adaptation via wavelet shrinkage [J].Biometrika. 199,1, 81 (3) :425-455.
  • 6Donoho D I., Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage [J]. Journal of the American Statistical Association, 1995, 90 ( 432 ) :1 200-- 1 224.
  • 7Stein C. Estimation of the mean of a multivariate nor real distribution [J]. The Annals of Statistics, 1981, 9(6): 1 135-1 151.
  • 8Efromovich S Y. Nonparametric estimation of a densi- ty of unknown smoothness [J]. Theory of Probability and Its Applications, 1986, 30:557-568.
  • 9Kerkyacharian G, Picard D, Tribouley K. Lp adaptive density estimation [J]. Bernoulli, 1996, 2(3): 229- 247.
  • 10Hall P, Kerkyacharian G, Pieard D. On the minimax optimality of block thresholded wavelet estimators [J]. Statistica Sinica, 1999, 9: 33--50.

二级参考文献41

  • 1卢松升,刘正之.基于小波的电力系统信号预定阈值去噪技术[J].电工技术学报,2005,20(11):97-100. 被引量:9
  • 2Ozdemir M K,Arslan H. Channel Estimation for Wireless Ofdm Systems[J]. IEEE Communications Surveys & Tutorials, 2007, 9(2):31.
  • 3Mallat S. A Wavelet Tour of Signal Processing: The Sparse Way (3e) [M]. New York: Academic Press, 2008.
  • 4Percival Donald B, Walden Andrew T. Wavelet Methods for Time Series Analysis. Cambridge[M]. England: Cambridge Uni- versity Press, 2000.
  • 5Tony C. On Block Thresholding in Wavelet Regression: Adap- tivity, Block Size, And Threshold Level[J]. Statistica Sinica, 2002,12: 1241-1273.
  • 6Cai Tony, Low Mark. Nonparametric Function Estimation Over Shrinking Neighborhoods: Superefficiency And Adaptation [ J ]. The Annals of Statistics, 2005,33:184-213.
  • 7Donoho D L, Johnstone I M. Threshold selection for wavelet shrinkage of noisy data[C]//Engineering in Medicine and Biolo- gy Society. Engineering Advances: New Opportunities for Bio- medical Engineers. Proceedings of the 16th Annual International Conference of the IEEE. vol. 21,1994:A24-A25.
  • 8Tony C, Harrison Z. A Data-driven Block Thresholding Ap- proach To Wavelet Estimation [J]. The Annals of Statistics, 2009,37 : 569-595.
  • 9Peter H, Spiridon P,Gerard K, et al. Numerical performance of block thresholded wavelet estimators[J]. Statistics and Compu- ting, 1997,7(2): 115-124.
  • 10802. 16e^TM-2005 IEEE Std. IEEE Standard for Local and metro- politan area networks Part 16:Air Interface for Fixed and Mo- bile Broadband Wireless Access Systems, Amendment 2:Physi- cal and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands Corrigendum 1 [S]. IEEE, 2005.

共引文献33

同被引文献222

引证文献30

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部