期刊文献+

二维联合概率密度函数构造方法及结构并联系统可靠度分析 被引量:3

BIVARIATE DISTRIBUTION CONSTRUCTION METHOD AND ITS APPLICATION TO STRUCTURAL PARALLEL SYSTEM RELIABILITY ANALYSIS
原文传递
导出
摘要 该文目的在于研究二维联合概率密度函数构造方法对结构系统可靠度的影响规律。首先简要介绍了2种构造联合分布函数的近似方法:基于Pearson相关系数的近似方法 P和基于Spearman相关系数的近似方法 S。提出了基于直接积分方法的并联系统失效概率计算方法。算例结果表明2种近似方法计算的系统失效概率误差取决于系统失效概率的大小、功能函数的形式以及功能函数间相关程度。系统失效概率越小,近似方法计算的系统失效概率误差越大。当系统失效概率小于10 3量级时,近似方法计算的系统失效概率误差较大,工程应用中应该引起足够的重视。功能函数间负相关时近似方法的误差明显大于功能函数间正相关时的误差。此外,系统失效概率误差并不是随着功能函数间相关性的增加而单调增加。 This paper aims to study the errors of the method P and method S. Firstly, method P and method S as well as the exact method are presented. Thereafter, the formulae for system probability of failure based on direct integration are derived. Finally, an illustrative example is investigated to demonstrate the errors associated with the two methods. The results indicate that the errors in system probabilities of failure for the two methods highly depend on the level of system probability of failure, the performance function underlying the system and the degree of correlation. Such errors increase greatly with the decreasing of system probabilities of failure. When the target system probability of failure is above 1.0x 10-3, the errors in the system probabilities of failure obtained from the two methods are significant, implying that the two approximate methods should be used carefully. The errors in system probability of failure for negative correlated performance functions are significantly higher thanthose for positive correlated performance functions. The maximum error in the system probability of failure may not be associated with a large correlation. It can happen at an intermediate correlation.
出处 《工程力学》 EI CSCD 北大核心 2013年第3期37-45,共9页 Engineering Mechanics
基金 国家杰出青年科学基金项目(51225903) 国家自然科学基金项目(51225903 51028901) 高等学校全国优秀博士学位论文作者专项资金项目(2007B50)
关键词 联合分布函数 Pearson相关系数 Spearman相关系数 系统失效概率 功能函数 joint probability distribution functions Pearson correlation coefficient Spearman correlationcoefficient system probability of failure performance function
  • 相关文献

参考文献15

  • 1Goda K. Statistical modeling of joint probability distribution using copula: Application to peak and permanent displacement seismic demands [J]. Structural Safety, 2010, 32(2): 112--123.
  • 2Ditlevsen O. Stochastic model for joint wave and wind loads on offshore structures [J]. Structural Safety, 2002,24(2/3/4): 139-- 163.
  • 3Li D Q, Chen Y F, Lu W B, Zhou C B. Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables [J]. Computers and Geotechnics, 2011, 38(1): 58--68.
  • 4Phoon K K, Santoso A, Quek S T. Probabilistic analysis of soil-water characteristic curves [J]. Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 2010, 136(3): 445--455.
  • 5Ang A H-S, Tang W H. Probability concepts in engineering: Emphasis on applications to civil and environmental engineering [M]. 2nd edition. New York: John Wiley and Sons, 2007: 138-- 140.
  • 6Phoon K K, Quek, S T, Huang H W. Simulation of non-Gaussian processes using fractile correlation [J]. Probabilistic Engineering Mechanics, 2004, 19(4): 287-- 292.
  • 7吴帅兵,李典庆,周创兵.二维联合分布函数构造方法及其对结构可靠度的影响分析[J].工程力学,2012,29(7):69-74. 被引量:7
  • 8Melchers R E. Structural reliability analysis and prediction [M]. 2nd edition. Chichester: John Wiley and Sons, 1999: 173--241.
  • 9Li D Q, Zhou C B, Lu W B, Jiang Q H. A system reliability approach for evaluating stability of rock wedges with correlated failure modes [J]. Computers and Geotechnics, 2009, 36(8): 1298-- 1307.
  • 10Nataf A. Drtermination des distributions de probabilitrs dont les marges sont donnres [J]. Comptes Rendus de l'Acadrmie des Sciences, 1962, A225: 42--43.

二级参考文献12

  • 1Grigoriu M. Simulation of non-Gaussian translation processes [J]. Journal of Engineering Mechanics, 1998, 124(2): 121- 126.
  • 2Phoon K K. Modeling and simulation of stochastic data [C]//Degroot D, De Jong J, Frost D, Baise L, eds. GeoCongress 2006: Geotechnical Engineering in the Information Technology Age, Atlanta, GA, Reston, VA: ASCE, 2006: I- 17.
  • 3Nataf A. D6termination des distributions de probabilit6s dont les marges sont donn6es [J]. Comptes Rendus de l'Acad6mie des Sciences 1962; A 225: 42- 43.
  • 4Der Kiureghian A, Liu P L. Structural reliability under incomplete probability information [J]. Journal of Engineering Mechanics, 1986, 112(1): 85- 104.
  • 5Mari D D, Kozt S. Correlation and dependence [M]. UK: Imperial College Press, 2001.
  • 6Iman R L, Conover W J. A distribution-free approach to inducing rank correlation among input variables [J]. Communications in Statistics 1982, B1 I(3): 311 -334.
  • 7Phoon K K. Application of fractile correlations and copulas to non-Gaussian random vectors [C]. Proceedings of the 2nd International Colloqium on Advanced Structural Reliability Analysis Network (ASRANet). International Center for Numerical Methods in Engineering, Barcelona, Spain, 2004 [CDROM].
  • 8Phoon K K, Quek S T, Huang H W. Simulation of non-Gaussian processes using fractile correlation [J]. Probabilistic Engineering Mechanics, 2004, 19(4): 287- 292.
  • 9Hotelling H, Pabst M R. Rank correlation and tests of significance involving no assumption of normality [J]. The Annals of Mathematical Statistics, 1936, 7(1): 29- 43.
  • 10Melchers R E. Structural reliability analysis and prediction [M]. 2nd ed. Chichester: John Wiley and Sons, 1999.

共引文献8

同被引文献29

  • 1H.Hwang,刘晶波.地震作用下钢筋混凝土桥梁结构易损性分析[J].土木工程学报,2004,37(6):47-51. 被引量:189
  • 2Goda K.Statistical modeling of joint probability distribution using copula: Application to peak and permanent displacement seismic demands [J].Structural Safety,2010,32(2): 112-123.
  • 3Leira B J.Probabilistic assessment of weld fatigue damage for a nonlinear combination of correlated stress components [J].Probabilistic Engineering Mechanics,2011,26(3): 492-500.
  • 4Low B K.Reliability analysis of rock slopes involving correlated nonnormals [J].International Journal of Rock Mechanics and Mining Sciences,2007,44(6): 922-935.
  • 5Li D Q,Chen Y F,Lu W B,et al.Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables [J].Computers and Geotechnics,2011,38(1): 58-68.
  • 6Li D Q,Tang X S,Phoon K K,et al.Bivariate simulation using copula and its application to probabilistic pile settlement analysis [J].International Journal for Numerical and Analytical Methods in Geomechanics,2013,37(6): 597-617.
  • 7Dutfoy A,Lebrun R.Practical approach to dependence modeling using copulas [J].Proceedings of the Institution of Mechanical Engineers,Part O: Journal of Risk and Reliability,2009,223(4): 347-361.
  • 8Lebrun R,Dutfoy A.A generalization of the Nataf transformation to distributions with elliptical copula [J].Probabilistic Engineering Mechanics,2009,24(2): 172-178.
  • 9Lebrun R,Dutfoy A.An innovating analysis of the Nataf transformation from the copula viewpoint [J].Probabilistic Engineering Mechanics,2009,24(3): 312-320.
  • 10Nelsen R B.An introduction to copulas [M].New York: Springer,2006: 214-216.

引证文献3

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部