期刊文献+

Gas monitoring data anomaly identification based on spatio-temporal correlativity analysis 被引量:3

Gas monitoring data anomaly identification based on spatio-temporal correlativity analysis
在线阅读 下载PDF
导出
摘要 Based on spatio-temporal correlativity analysis method, the automatic identification techniques for data anomaly monitoring of coal mining working face gas are presented. The asynchronous correlative characteristics of gas migration in working face airflow direction are qualitatively analyzed. The calculation method of asynchronous correlation delay step and the prediction and inversion formulas of gas concentration changing with time and space after gas emission in the air return roadway are provided. By calculating one hundred and fifty groups of gas sensors data series from a coal mine which have the theoretical correlativity, the correlative coefficient values range of eight kinds of data anomaly is obtained. Then the gas moni- toring data anomaly identification algorithm based on spatio-temporal correlativity analysis is accordingly presented. In order to improve the efficiency of analysis, the gas sensors code rules which can express the spatial topological relations are sug- gested. The experiments indicate that methods presented in this article can effectively compensate the defects of methods based on a single gas sensor monitoring data.
出处 《Journal of Coal Science & Engineering(China)》 2013年第1期8-13,共6页 煤炭学报(英文版)
基金 Supported by the National Natural Science Foundation of China (40971275, 50811120111)
关键词 gas monitoring spatio-temporal correlativity analysis anomaly pattern identification ALGORITHM 相关性分析方法 监测数据 瓦斯监测 时空 异常识别 气体传感器 采煤工作面 自动识别技术
  • 相关文献

参考文献9

二级参考文献62

共引文献347

同被引文献50

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部