期刊文献+

基于openCV的车辆自动跟踪系统的设计与实现 被引量:2

Design and Implementation of Vehicle Automatic Tracking and Detection System Based on OpenCV
在线阅读 下载PDF
导出
摘要 道路车辆的实时识别是完善智能交通运输系统必要的技术手段,它不仅能够为智能系统提供可靠的基础数据,而且是检测智能系统实时性的必要前提,现有车辆识别技术一般都难以脱离计算机工作,针对此种情况,提出利用具有广泛适应性和终端接口的openCV技术实现车辆的实时检测与跟踪,该技术利用帧间差分技术确定像素点的运动与否,从而依据像素点的运动情况以及阈值分割完成对运动目标的跟踪检测,此外,利用camshift算法实现车辆的自动跟踪检测。 The real-time recognition of road vehicles is a necessary technical way to improve the intelligent transportation system. It is not only able to provide a reliable basis data for intelligent systems, but also is a necessary precondition for real-time intelligent detection system. At present vehicle identification technology can be not able to work away from the computer, as for this situation, this paper provides a method to achieve real-time detection and tracking of the vehicle with the openCV technology, which has a wide adaptability and terminal interface. This technology uses the differ-interframe technique to determine the pixel motion or not, thus, it complete the tracking and detection of moving targets with the pixels of movement as well as threshold segmentation. In addition, it uses camshift algorithm to achieve automatic tracking and detection of vehicle
作者 刘永涛 乔洁
出处 《汽车实用技术》 2013年第2期23-26,共4页 Automobile Applied Technology
关键词 OPENCV 帧间差分 图像分割 CAMSHIFT 自动跟踪 openCV, threshold, segment images, camshift, track automatically
  • 相关文献

参考文献5

二级参考文献22

  • 1曾国辉,张秀彬,胡朝晖,林峰.基于模糊度的图像阈值分割法[J].微型电脑应用,2003,19(2):10-11. 被引量:4
  • 2李翊华,胡匡祜.细胞显微图像灰度梯度双阈值的快速分割[J].模式识别与人工智能,1995,8(4):357-362. 被引量:12
  • 3张志佳,黄莎白,史泽林.一种改进的势函数聚类多阈值图像分割算法[J].光电工程,2005,32(8):64-68. 被引量:7
  • 4Comaniciu D, Ramesh V, Meer P. Kernel Based Object Tracking[J]. IEEE Trans Pattern Analysis Machine Intelligence, 2003, 25(5): 564-575.
  • 5Sim D G, Kwon O K, Park R H. Object Matching Algorithm Using Robust Hausdorff Distance Measures[J]. IEEE Transactions on Image Processing, 1999, 8(3): 425-429.
  • 6Comaniciu D, Ramesh V, Meer P. The Variable Bandwidth Mean Shift and Data-Driven Scale Seleetion[C]//Intemational Conference on Computer Vision. Piscataway, USA: IEEE, 2001 : 438-445.
  • 7Allen J G, Xu R Y D, Jin J S. Object Tracking Using CamShift Algorithm and Multiple Quantized Feature Spaces [C]//Proceedings of 2003 Pan-Sydney Area Workshop on Visual Information Processing. Darlinghurst, Australia: Australian Computer Society, 2004: 3-7.
  • 8Arulampalam M S, Maskell S, Gordon N, et al. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
  • 9Gabrea M, Grivel E, Najim M. A Single Microphone Kalman Filter-Based Noise Canceller[J]. IEEE Signal Processing Lett, 1999, 6(3): 55-57.
  • 10Collins R T. Mean-Shift Blob Tracking Through Scale Space [C]//Proc of IEEE Int Conf on Computer Vision and Pattern Recognition. Baltimore: Victor Graphics, 2003 : 234-240.

共引文献49

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部