期刊文献+

KdV方程的Chebyshev-Hermite谱配置法 被引量:4

Chebyshev-Hermite spectral collocation method for KdV equations
在线阅读 下载PDF
导出
摘要 针对无界区域上Korteweg.-de Vries(KdV)方程构造了时空全离散的ChebyshevHermite谱配置格式,即在空间方向上采用Hermite谱配置方法离散,时间方向上采用Chebyshev谱配置方法离散.提出了一个简单迭代算法,该算法非常适合并行计算.数值结果显示了此算法的有效性. A Chebyshev-Hermite spectral collocation method is constructed for Korteweg-de Vries (KdV) equations on the whole line. The Hermite collocation method (based on the Lagrange interpolation) in space, and the Chebyshev-Gauss collocation method in time are used. A simple iterative algorithm is suggested, which can be implemented in a parallel fashion. Numerical results demonstrate the efficiency of the method.
出处 《应用数学与计算数学学报》 2013年第1期1-8,共8页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金资助项目(11171225) 上海市教委科研创新资助项目(12ZZ131) 上海市教委"曙光计划"资助项目(08SG45) 中央高校基本科研业务费专项资金资助项目(12D10914)
关键词 Chebyshev—Hermite谱配置法 KORTEWEG-DE Vries(KdV)方程 无界区域 Chebyshev-Hermite spectral collocation method Korteweg-de Vries (KdV) equation unbounded domain
  • 相关文献

参考文献16

  • 1Bernardi C, Maday Y. Spectral methods [M]// Ciarlet P G, Lions J L. Handbook of Numerical Analysis. Amsterdem: Elsevier, 1999.
  • 2Canuto C, Hussaini M Y, Quarteroni A, Zang T A.Spectral Methods$:$ Fundamentals in Single Domains [M]. Berlin: Springer-Verlag, 2006.
  • 3Guo B Y.Spectral Methods and Their Applications [M]. Singapore: World Scientific, 1998.
  • 4Shen J, Tang T, Wang L L.Spectral Methods$:$ Algorithms, Analysis and Applications [M]. Berlin: Springer-Verlag, 2011.
  • 5Tal-Ezer H. Spectral methods in time for hyperbolic equations [J].SIMA J Numer Anal, 1986,23: 11-26.
  • 6Tal-Ezer H. Spectral methods in time for parabolic problems [J].SIAM J Numer Anal, 1989, 26}: 1-11.
  • 7Bar-Yoseph P, Moses E, Zrahia U, Yarin A L. Space-time spectral element methods for one-dimensionalnonlinear advection-diffusion problems [J].J Comput Phys,.1995, 119: 62-74.
  • 8Zrahia U, Bar-Yoseph P. Space-time spectral element method for solution of second-order hyperbolic equations [J].Comput Methods Appl Mech Engrg, 1994,116: 135-146.
  • 9Tang J G, Ma H P. Single and multi-interval Legendreτ-methods in time for parabolic equations [J].Adv Comput Math, 2002,17: 349-367.
  • 10Tang J G, Ma H P. Single and multi-interval Legendre spectral methods in time for parabolic equations [J].Numer Methods Partial Differential Equations, 2005,22: 1007-1034.

同被引文献15

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部