期刊文献+

矩阵半张量积的基本原理与适用领域 被引量:4

PRINCIPLE AND RANGE OF POSSIBLE APPLICATIONS OF SIME-TENSOR PRODUCT OF MATRICES
原文传递
导出
摘要 作为一种新的矩阵乘法,矩阵半张量积正得到国内外学者越来越多的重视和参与,从而使之应用于越来越多的研究课题中.希望分析矩阵半张量积的基本原理,从其合理性说明它产生的必然性和存在的意义.同时,与已有的综述不同,这里不准备具体介绍它在那些问题中得到那些应用,而是从原理出发,说明它可能在那些类型的相关科学问题中得到应用.这使我们能够更主动地去开发它可能的潜在应用. As a new matrix product, semi-tensor product of matrices has attracted more and more attention and participation from domestic and international academic society, and it has been applied to more and more research topics. The purpose of this paper is to analyze the fundamental principle of semi-tensor product, and to explain the reason for the emergence and existence of the semi-tensor product. Unlike the existing surveys, this paper does not intend to introduce what applications the semi- tensor product has been used to. Instead, we want to explore what kind of problems the semi-tensor product might be used according to the essence of semi-tensor product. Such observation could help us to dig out unknown possible further applications of semi-tensor product.
出处 《系统科学与数学》 CSCD 北大核心 2012年第12期1488-1496,共9页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(61074114 60821091 61104065)资助项目
关键词 矩阵半张量积 布尔网络 泛代数 多元多项式 非线性矩阵方法 状态空间与正则 子空间 Semi-tensor product of matrices, Boolean network, university algebra,multi-variable polynomials, matrix method of nonlinear problems.
  • 相关文献

参考文献2

二级参考文献11

  • 1程代展.Semi-tensor product of matrices and its application to Morgen's problem[J].Science in China(Series F),2001,44(3):195-212. 被引量:54
  • 2Andrews H, C, Kane J. Kronecker matrices, computer implementation, and generalized spectra [J ]. J Assoc Comput Mach, 1970,17 : 260-268.
  • 3Andrews H C,Caspari K L. A generalized technique for spectral analysis. IEEE Trans Computer, 1970,19:16-25.
  • 4Graybill F A. An Introduction to Linear Statistical Models[M]. Voll,New York: McGraw-Hill, 1961.
  • 5Brewer J W. Kronecker products and matrix calculus in system theory[J]. IEEE Trans Ciecuits and Systems, 1978,25:772-781.
  • 6Swami A, Mendel J M. Time and lagrecursive computation of cumulants from a state space model[J]. IEEE Trans Automatic Control, 1990,35:4-17.
  • 7Regalia P A,Mrtia S. Kronecker products, unitary matrices and signal processing applications [J]. SIAM Review, 1989,31(4) : 586-613.
  • 8Benzisrael A,Greville T N E. Generalized inverses theory and application[M]. New York :Wiley, 1974.
  • 9Campbell S L, Meyer C D. Generalized inverses of linear transformations[M]. London : Pitman, 1979.
  • 10程代展,齐洪胜.矩阵的半张量积[M].北京:科学出版社,2007.

共引文献114

同被引文献30

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部