摘要
针对柴油机微粒捕集器降怠速再生过程载体峰值温度偏高问题进行了基于排气中氧气体积分数控制策略的降怠速再生试验.结果表明:在高怠速工况通过耦合调整再循环废气和进气流量可有效控制排气中氧气体积分数低至8%以下,而氧控所引起的燃烧恶化也导致了HC、CO排放量增大;碳载量和排气流量相同条件下,进行的氧控降怠速再生试验过程其载体内部峰值温度显著低于原机非氧控降怠速再生数值;提高载体碳载量并进行氧控降怠速再生,微粒加载背压和载体峰值温度仍在发动机正常运转以及载体材料温度安全范围内,满足安全以及可靠再生的同时达到了拓展安全再生碳载量限值以及延长微粒捕集器再生周期的目的.
For the over-high carrier temperature of diesel particulate filter during drop-to-idle (DTI) regeneration process, DTI regeneration test with exhaust oxygen concentration controlling strategy was conducted. Test results show that adjusting inlet flow and exhaust gas recirculation (EGR)at high idle speed can effectively reduce exhaust oxygen volume fraction to less than 8%. Combustion deterioration caused by oxygen volume fraction control also leads to high emission of HC and CO. Carrier peak temperature with oxygen-control DTI regeneration process is significantly lower than the temperature with original nonoxygen-control DTI regeneration process under same soot load and exhaust flow. Oxygen-control DTI regeneration test by increasing soot load shows that load back-pressure and carrier peak temperature are still within the scope of normal engine operation and safety carrier material temperature, meeting the condition of safety and reliable regeneration, extending soot load limit and regeneration cycle.
出处
《内燃机学报》
EI
CAS
CSCD
北大核心
2013年第2期154-158,共5页
Transactions of Csice
基金
国家重点基础研究发展计划(973)资助项目(2013CB228402)
国家自然科学基金资助项目(51206060)
关键词
微粒捕集器
再生
氧气
载体温度
碳载量
diesel particulate filter
regeneration
oxygen
carrier temperature
soot load