期刊文献+

High temperature deformation behavior and optimization of hot compression process parameters in TC11 titanium alloy with coarse lamellar original microstructure 被引量:4

粗层片原始组织的TC11钛合金热变形行为及其热压缩工艺参数优化(英文)
在线阅读 下载PDF
导出
摘要 The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results. 基于粗层片原始组织的α+β型TC11钛合金的热压缩实验,研究了该合金在950-1100°C、0.001-10s1条件下的热变形行为;依据动态材料模型构建了不同应变下的加工图,并对热压缩工艺参数和变形机制分别进行优化和分析。结果表明,加工图中存在2个功率耗散效率较高区和1个功率耗散效率较低的流变失稳区。这些区域的功率耗散效率呈现出收敛或发散的特征。在α+β两相区,功率耗散效率收敛区位于950-990°C、0.001-0.01s1范围,其峰值功率耗散效率出现在950°C、0.001s1,前者和后者分别为α+β两相区较佳和最佳的热压缩工艺窗口;在β单相区,功率耗散效率收敛区位于1020-1080°C、0.001-0.1s1范围,其峰值功率耗散效率出现在1050°C、0.001-0.01s1,前者和后者分别为β相区的较佳和最佳的热压缩工艺窗口。功率耗散效率发散区位于应变速率大于0.5s1的范围内,其对应的流动失稳机制为局部流动,此时流变应力呈现出流变软化现象。在α+β两相区和β单相区优化工艺窗口内的变形机制分别为动态球化和自扩散控制的动态再结晶。优化结果与变形组织观察结果吻合良好。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期353-360,共8页 中国有色金属学报(英文版)
基金 Project (51005112) supported by the National Natural Science Foundation of China Project (2010ZF56019) supported by the Aviation Science Foundation of China Project (GJJ11156) supported by the Education Commission of Jiangxi Province, China Project(GF200901008) supported by the Open Fund of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, China
关键词 titanium alloy coarse lamellar microstructure high temperature deformation behavior processing map hot compression process parameter optimization TC11钛合金 粗层片组织 高温变形行为 加工图 热压缩工艺 参数优化
  • 相关文献

参考文献24

  • 1DING R, GUO Z X, WILSON A. Microstructural evolution of a Ti-6AI-4V alloy during thennomechanical processing [J]. Materials Science and Engineering A, 2002, 327: 233-245.
  • 2WANGJARA P, JAHAZI M, MONAJATI H, VUE S. Influence of thennomechanical processing on microstructural evolution in near-a alloy IMI834 [J]. Materials Science and Engineering A, 2006, 416: 300-311.
  • 3MA F C, LU W J, QING J N, ZHANG D. Microstructure evolution of near-a titanium alloys during thennomechanical processing [J]. Materials Science and Engineering A, 2006, 416: 59-65.
  • 4ABBASI S M, MOMENI A. Effect of hot working and post-deformation heat treatment on microstructure and tensile properties of Ti-6AI-4V alloy [J]. Transactions of Nonferrous Metals Society of China, 20 II, 21: 1728-1734.
  • 5PRASAD Y V R K, GEGEL H L, DORAIVELU S M, MALAS J C, MORGAN J T, LARK K A, BARKER D R. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242 [J]. Metallurgical Transactions A, 1984, 15(10): 1883-1892.
  • 6PRASAD Y V R K. Author's reply: Dynamic materials model: basis and principles [J]. Metallurgical and Materials Transactions A, 1996, 27: 235-236.
  • 7PRASAD Y V R K, SESHACHARYULU T. Modeling of hot deformation for microstructural control [J]. International Materials Reviews, 1998,43(6): 243-258.
  • 8SELVAN S A, RAMANATHAN S. Hot workability of as-cast and extruded ZE41A magnesium alloy using processing maps [J]. Transactions of Nonferrous Metals Society of China, 20 11, 21: 257-264.
  • 9VENUGOPAL S, VENUGOPAL P, MANNAN S L. Optimization of cold and warm workability of commercially pure titanium using dynamic materials model (DMM) instability maps Pl. Journal of Materials Processing Technology, 2008, 202: 201-215.
  • 10NIU Yong, HOU Hong-liang, LI Miao-quan, LI Zhi-qiang. High temperature deformation behavior of a near alpha Ti600 titanium alloy [J]. Materials Science and Engineering A, 2008, 492: 24-28.

同被引文献52

  • 1李俊杰,王锦程,许泉,杨根仓.外来夹杂物颗粒对枝晶生长形态影响的相场法研究[J].物理学报,2007,56(3):1514-1519. 被引量:10
  • 2ASTA M, BECKERMANN C, KARMA A, KURZ W, NAPOLITANO A, PLAPP M, PURDY G, RAPPAZ M, TRIVEDI R, Solidification microstructures and solid-state parallels: Recent developments, future directions[J]. Acta Materialia, 2009, 57: 941-971.
  • 3YAN Z M, LI X T, CAO Z Q, ZHANG X A, LI T J. Grain refinement of horizontal continuous casting of the CuNil0FelMn alloy hollow billets by rotating magnetic field (RMF)[J]. Materials Letters, 2008, 62: 4389-4392.
  • 4YASUDA H, TOH T, IWAI K, MORITA K. Recent progress of EPM in steelmaking, casting, and solidification processing[J]. ISIJ International, 2007, 47(4): 619-626.
  • 5EASTON M, DAVISON C, JOHN D Jr. Effect of alloy composition on the dendrite arm spacing of multicomponent aluminum alloys[J]. Metallurgical Transactions A, 2010, 41(6): 1528-1538.
  • 6AN G Y, LIU L X. Dendrite spacing in unidirectional solidified A1-Cu alloy[J]. Journal of Crystal Growth, 1987, 80(2): 383-392.
  • 7FABIETTI L M, SEETHARAMAN V, TRIVEDI R The development of solidification mierostructures in the presence of lateral constraints[J]. Metallurgical Transactions A, 1990, 21: 1299-1310.
  • 8WANG Gang, ZENG De-chang, L1U Zbong-wu. Phase field calculation of interface mobility in a ternary alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(6): 1711-1716.
  • 9KOBAYASHI R. Modeling and numerical simulations of dendritic crystal growth[J]. Physica D, 1993, 63: 410-423.
  • 10Alain Lasalmonie.Intermetallics: Why is it so difficult to introduce them in gas turbine engines?[J].Intermetallics.2006(10)

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部