期刊文献+

采用剪切波变换的红外弱小目标图像预处理 被引量:2

Infrared Dim and Small Target Image Pre-processing Using Shearlet Transform
在线阅读 下载PDF
导出
摘要 提出一种采用剪切波变换的红外弱小目标图像预处理新方法.该方法首先采用剪切波变换对图像进行分解,针对高低频子带的不同特点,对低频子带系数采用基于贝叶斯统计的方法进行处理,推导出剪切波系数为拉普拉斯先验分布的最大后验估计表达式和低频子带阈值;而高频子带则对其系数构成分析后,利用图像不同组成元素能量值的不同设定阈值;对处理后的子带系数进行重构以获得预测的背景图像,将其与原图相减,可得到突出目标且背景被抑制的图像;采用经典的自适应阈值分割法对预处理后的图像进行分割,很好地实现了目标检测.实验结果表明,该方法处理的图像信噪比值高,在客观评价指标与主观视觉两方面均表现出良好的效果. An image pre-processing method based on shearlet transform was proposed. First, image was decomposed by shearlet transform, then to get the subband coefficients, Bayesian statistics and threshold shrinkage methods were used in the low-frequency component and high--frequency components, through shearlet reconstruction, the predicted background of the image was obtained, the original image is subtracted by the predicted background image and we can get the result image, Finally, in order to test the new method, classical adaptive threshold segmentation was used to segregate the targets. Theoretical analysis and experimental results show that, compared with several commonly used methods , ISNR of result image which using the new method is higher than the others, and have better effects both in objective evaluation and the subjective vision.
出处 《微电子学与计算机》 CSCD 北大核心 2013年第4期5-9,共5页 Microelectronics & Computer
基金 国家自然科学基金项目(60902067)
关键词 红外图像预处理 剪切波变换 贝叶斯统计 阈值收缩 infrared image pre-processing shearlet transform Bayesian statistics threshold shrinkage
  • 相关文献

参考文献9

  • 1高晶,孙继银,刘婧,吴昆.基于区域模糊阈值的前视红外目标识别[J].光学精密工程,2011,19(12):3056-3063. 被引量:9
  • 2Guo K, I.abate D. Optimally sparse multidimensional representation using shearlets[J]. SIAM J. Math Anal. 2008,39 (1): 298-318.
  • 3邹瑞滨,史彩成,毛二可.基于剪切波变换的复杂海面红外目标检测算法[J].仪器仪表学报,2011,32(5):1103-1108. 被引量:17
  • 4Miao Q G, Shi C, Xu P, et al. A novel algorithm of image fusion using shearlets [J]. Optics Communications , 2010,284 (6): 1540-1547.
  • 5Da Cunha A I,. Zhou J P, Do M N. The nonsubsam- pled contourlet transform., theory, design,and applications[J]. IEEE Transactions on Image Processing, 2006. 15(10): 3089-3101.
  • 6Kutyniok G, I.abate D. Resolution of the wave front set using continuous Shearlets [J]. Transactions of The American Mathematical society, 2009. 361 (5): 2719-754.
  • 7侯建华,田金文.基于贝叶斯最大后验估计的局部自适应小波去噪[J].计算机工程,2006,32(11):13-15. 被引量:13
  • 8Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of the American Statistical Assoc. , 19950 90 (12) : 1200 - 1224.
  • 9Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika. 1994, 81(3) : 425-455.

二级参考文献40

  • 1卓志敏,杨雷,杨莘元,池庆玺.一种复杂环境下的红外成像运动目标检测方法[J].宇航学报,2008,29(1):339-343. 被引量:5
  • 2曾智勇,张学军,崔江涛,周利华.基于显著兴趣点颜色及空间分布的图像检索新方法[J].光子学报,2006,35(2):308-311. 被引量:21
  • 3LIM W.The discrete shearlet transform:a new directional transform and compactly supported shearlet frames[J].IEEE Trans.Image Process.2010 (19):1166-1180.
  • 4SHENG Y,DEMETRIO LABATE,GLENN R E,et al.A shearlets approach to edge analysis and detection[J].Image Processing,IEEE Transactions,2009,18 (5):929-941.
  • 5EASLEY G,LABATE D,LIM W Q.Sparse directional image representations using the discrete shearlet transform[J].Applied and Computational Harmonic Analysis,2008,25(1):25-46.
  • 6EASLEY G,LABATE D,LIM W Q.Sparse directional image representatious using the discrete shearlet transform[J].Applied and Computational Harmonic Analysis,2008,25(1):25-46.
  • 7SHENG Y,DEMETRIO LABATE,GLENN R E,et al.Edge detection and processing using shearlets[C].Proceedings of IEEE Int.Conf.on Image Processing 2008,2008:1148-1151.
  • 8MALLAT S,HWANG W L.Singularity detection and processing with wavelets[J].IEEE Trans.Inf.Theory,1992,38(2):617-643.
  • 9KUTYNIOK,G.LABATE D.Resolution of the wavefront set using continous shearlets[J].Transactions of The American Mathematical society,2009,361 (5):2719 -2754.
  • 10GUO K H,DEMETRIO LABATE.Representation of Fourier Integral Operators using Shearlets[J].Journal of Fourier Analysis and Applications,2008,14 (3):327-371.

共引文献36

同被引文献297

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部