期刊文献+

无线传感器网络中LEACH协议的改进 被引量:15

An Improved Algorithm for LEACH Protocol in Wireless Sensor Network
原文传递
导出
摘要 针对低功耗自适应集簇分层型协议(LEACH)簇头选举的盲目性问题、簇内节点能量消耗不均衡问题以及一跳的通信方式造成的能量大量耗费问题,提出了基于"生命游戏"的LEACH协议改进算法.通过对节点剩余能量的估算实现对簇头选举机制的优化,并提出"生命游戏"睡眠调度模型和利用邻居节点作为转发节点的多跳通信方式.NS2仿真结果表明,改进的协议有效延长了无线传感器网络的存活时间,提高了数据的发送量. For the blindness of cluster head election, the imbalance of energy consumption in the cluster and the substantial energy consumption in communication with a hop in low energy adaptive clustering hi- erarchy (LEACH) protocol, an improved algorithm of the LEACH protocol based on "game of life" is proposed. First the cluster head election mechanism based on the estimate of the node residual energy is optimized. Then the sleeping scheduling model based on "game of life" and communication of multi-hops which used its neighbor nodes as forwarding nodes are proposed. Network simulator version 2 simulation shows that the improved protocol effectively prolongs the survival time of the wireless sensor networks and increass the amount of data transmission.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2013年第1期105-109,共5页 Journal of Beijing University of Posts and Telecommunications
基金 吉林省重点科技发展项目(20120303) 国家自然科学基金项目(61272412)
关键词 无线传感器网络 生命游戏 簇头选举 睡眠调度 wireless sensor networks game of life cluster head election sleep scheduling
  • 相关文献

参考文献4

  • 1Rodoplu V, Meng T H. Minimum energy mobile wireless networks [J]. IEEE Journal on Selected Areas in Com- munications, 1999, 17(8): 1333-1344.
  • 2Weber S, Andrews J G, Jindal N. An overview of the transmission capacity of wireless networks [ J ]. IEEE Transactions on Communications, 2010, 58 (12) : 3593- 3604.
  • 3Hu Junping, Jin Yuhui, Dou Liang. A time-based clus- ter-head selection algorithm for LEACH [ C ]// Chi-Ming Chen. Proceedings of the 13th IEEE Symposium on Com- puters and Communications. Marrakech: IEEE, 2008: 1172-1176.
  • 4闫中江,沈中,常义林,张颖,代亮.非连通无线传感器网络的最少传感器节点部署[J].北京邮电大学学报,2011,34(5):15-18. 被引量:4

二级参考文献8

  • 1Yick J, Mukherjee B, Ghosal D. Wireless sensor network survey [ J ]. Computer Networks, 2008, 52 ( 12 ) : 2292-2330.
  • 2Xu X, Sahni S. Approximation algorithms for sensor de- ployment[ J]. IEEE Transactions on Mobile Computing, 2007, 56(12) : 1681-1695.
  • 3Lin F Y S, Chiu P L. A near-optimal sensor placement algorithm to achieve complete coverage/discrimination in sensor networks[J]. IEEE Comm Letters, 2005, 9(1) : 43-45.
  • 4Jourdan B, Weck 0 L. Layout optimization for a wireless sensor network using a multi-objective genetic algorithm [ C 1//J Proceeding of IEEE Vehicular Technology Confer-ence. Los Angeles: IEEE Press, 2004 : 2466-2470.
  • 5Xu Y, Yao X. A GA approach to the optimal placement of sensors in wireless sensor networks with obstacles and preferences [ C ] JJ Proceedings of IEEE Conference on Consumer Communications and Networking (CCNC). Las Vegas: IEEE Press, 2006: 127-131.
  • 6Hochbaum D S. Approximation algorithms for the set cov- ering and vertex cover problems [ Jl. SIAM Journal on Computing, 1982, 11(3) : 555-556.
  • 7刘巍,崔莉.基于蚁群算法的传感器网络节点部署设计[J].通信学报,2009,30(10):24-33. 被引量:13
  • 8何欣,桂小林,安健.面向目标覆盖的无线传感器网络确定性部署方法[J].西安交通大学学报,2010,44(6):6-9. 被引量:28

共引文献3

同被引文献99

引证文献15

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部