期刊文献+

多重网格法求解雷诺方程 被引量:3

Multi-grid Method for Solving Reynolds Equation
在线阅读 下载PDF
导出
摘要 有限差分法是一种求解滑动轴承二维雷诺方程的有效方法,但是有限差分法使用的是单纯的超松弛迭代法求解雷诺方程。介绍了用多重网络法求解雷诺方程,它是加速后的超松弛迭代方法,比单纯的超松弛迭代法具有更短的计算时间、更高的计算精度和更快的收敛速度。 Finite difference method is a very effective method for solving the two-dimensional Reynolds equation of sliding bearing. However, the finite difference method makes use of simply over-relaxation iterative method to solve the Reynolds equation, the multi-grid method introduced in this paper is an accelerated over-relaxation iterative method with shorter computation time, higher precision and faster convergence rate than finite difference method. This paper described how to use the multi-grid method to solve Reynolds equation, and gave a concrete example.
出处 《机械工程与自动化》 2013年第2期70-71,76,共3页 Mechanical Engineering & Automation
关键词 有限差分法 多重网格法 雷诺方程 finite difference method; multi-grid method Reynolds equation
  • 相关文献

参考文献5

二级参考文献14

共引文献45

同被引文献27

  • 1敏政,王乐,魏志国,丁大力.基于MATLAB技术的滑动轴承油膜压力分布的模拟[J].润滑与密封,2008,33(8):51-53. 被引量:16
  • 2吴承伟,胡令臣.界面滑移与油膜破裂[J].大连理工大学学报,1993,33(2):172-178. 被引量:10
  • 3陈燕生.静压支承原理和设计[M].北京:国防工业出版社,1980.
  • 4Neto C, Evans D R, Bonaccurso E, et al. Boundary slip in Newtonian liquids :a review of experimental studies[ J]. Reports on Progress in Physics,2005,61 (12) :2859 -2897.
  • 5Vinogradova O I. Slippage of water over hydrophobic surfaces [J]. International Journal of Mineral Processing, 1999,56( 1/2/ 3/4) :31 -60.
  • 6Huang Ping, Luo Jianbin, Wen Shizhu. Theoretical study on the lubrication failure for the lubricants with a limiting shear stress [ J ]. Tribology International, 1999, V32 (7) :421 - 426.
  • 7Fatu A, Maspeyrot P, Hajjam M. Wall slip effects in (elasto) hydrodynamic journal bearings [ J ]. Tribology International, 2011 , (7/8) : 868 - 877.
  • 8Salant R F , Fortier A E. Numerical analysis of aslider bearing with a heterogeneous slip/no-slip surface [ J ]. Tribology Trans-actions,2004,47 (3) ,328 - 334.
  • 9Navier C L M H. Memoire sur les lois du mouvement des fluids [J]. Mem I Acad Roy Sci I Inst France,1823,6:389-440.
  • 10Thompson P A, Trojan S M. A general boundary condition for liquid flow at solid surfaces [ J ]. Nature, 1997,389 (25) :360 - 362.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部