期刊文献+

盲小波算法在金属矿床地震资料去噪处理中的应用 被引量:6

Application of blind wavelet algorithm to de-noising of the metallic ore deposit seismic data
在线阅读 下载PDF
导出
摘要 根据小波分析和盲信号分离原理,提出了一种金属地震资料降噪的盲小波算法。首先将金属地震信号用小波分解为不同频带的信号;其次把不同频带的信号进行软阈值法处理,并进一步对不同频带信号进行盲分离,提取出与源信号相关的信号;最后通过小波重构估计源信号。通过盲小波算法与其他降噪技术对实际金属地震资料进行降噪处理,结果表明盲小波算法能有效消除各种干扰噪声。去噪后的金属地震资料纹理清晰,地震资料剖面信噪比显著提高。 Based on the wavelet analysis and blind source separation, this paper proposes a blind wavelet algorithm to eliminate the metal ore deposit seismic data noises. This new method contains the following three main steps. Firstly, the metal ore deposit seismic signal is decomposed into different frequency band signals by using wavelet decomposition, secondly, it needs to use soft threshold to dispose different frequency band signals, and further to separate it by the blind source separation, meanwhile the different frequency band signals are extracted through an appropriate manner, and finally, the source signal is obtained by the reconstruction signal of wavelet transform. Through the blind wavelet algorithm and the other noise reduction technology, the processing of reducing noises for the actual metal ore deposit seismic data is done. This experimental result shows that the blind wavelet algorithm can eliminate various interference noises effectively. Then, the metal ore deposit seismic data texture is clear, and the signal-to-noise ratio of the seismic data section increases significantly.
出处 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第2期120-124,共5页 Journal of Chengdu University of Technology: Science & Technology Edition
基金 中国地质调查项目(1212010916040)
关键词 金属矿地震资料 去噪 小波分析 盲信号分离 metal ore deposits seismic data de-noising wavelet analysis blind signal separation
  • 相关文献

参考文献12

  • 1赵天娇,何选森,陈利.基于新阈值函数小波变换的噪声盲分离算法[J].计算机应用研究,2010,27(8):2886-2888. 被引量:6
  • 2Li J, Cheng C K, Jiang T Y. Wavelet de-noising of partial discharge signals based on genetic adaptive threshold estimation [J]. IEEE Transactions on Die- lectrics and Electrical Insulation, 2012, 19(2) : 543-- 548.
  • 3I.iua C C, Sun T Y. Heuristic wavelet shrinkage fordenoising [J]. Applied Soft Computing, 2011, 11: 256--264.
  • 4Zhang H, Blackburn T R, Phung B T, etal. A novel wavelet transform technique for on-line partial dis- charge measurements: 1. WT denoising algorithm [J]. IEEE Trans Dielectr Eleetr Insul, 2007, 14(4): 3--14.
  • 5Cardoso J F, Souloumiac A. Blind beamforming from non-Gaussian signals [J]. Proc Inst Elect Eng-F, 1993, 140(6): 362--370.
  • 6CichockiSA.吴正国,等译.自适应盲信号与图象处理[M].北京:电子工业出版社,2005.
  • 7李加文,李从心.基于频域盲解卷的噪声信号分离[J].振动与冲击,2006,25(6):100-103. 被引量:7
  • 8Cichocki, Amari S I. Adaptive Signal and Image Pro- cessing: Learning Algorithms and Applications[M]. New York: Wiley, 2002.
  • 9Cardoso J F. Souloumiac A. Blind beamforming for non-Gaussian signals [J]. IEEE Proceedings F, 1993, 140(6): 362--370.
  • 10Cardoso J F. High-order for independent component analysis[J]. Neural Computation, 1999, 342 (1) 157--192.

二级参考文献45

共引文献23

同被引文献33

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部