期刊文献+

具有拟周期外力的非自治发展方程的惯性流形 被引量:6

在线阅读 下载PDF
导出
摘要 本文主要研究了非自治发展方程的长时间性态,利用谱间断条件和广义雄性质,证明具有拟周期外 力的非自治发展方程的惯性流形的存在性,其惯性形式是具有拟周期外力的非自治有限维常微分方程. 特别对拟周期外力的反应扩散方程,证明了其惯性流形的存在性.
机构地区 中山大学数学系
出处 《数学年刊(A辑)》 CSCD 北大核心 2000年第4期457-470,共14页 Chinese Annals of Mathematics
基金 国家自然科学基金!(No.19871094) 广东省自然科学基金!(No.990229)
  • 相关文献

参考文献7

  • 1[1]Temam, R. Infinite dimensional dynamical systemsin mechanics and physics [M], Springer Verlag,New York, 1988
  • 2[2]Mallet-Paret, J. & Sell, G. R. Inertial manifolds for reaction-diffusion equations in higher space dimension [J], J. Amer. Math. Soc., 1(1989), 805--866
  • 3[3]Debussche, A. & Marion, M. On the construction offamilies of approximate inertial manifolds [J], J. DifferentialEquations, 100(1992), 173--201
  • 4[4]Eden, A. & Rakotoson, J. M. Exponentialattractors for a double nonlinear equation [J], Journal of Mathematical Analysis and Applicationa, 185(1994), 321--339
  • 5[5]Chepyzhov, V. V. & Vishik, M. I. Attractors ofnon-autonomous dynamical systems and their dimansion [J], J. Math. Pures Appl., 73(1994), 279--333
  • 6[6]Haraux, A. Attractors of asymptotically compactprocesses and applications to nonlinear partial differential equations [J], Comm. P. D. E., 13(1988), 1383--1414
  • 7[7]Smiley, M. W. Global attractors and approximateinertial manifolds for nonautonomous dissipative equations [J], Applicable Analysis, 50(1993), 217--241

同被引文献35

  • 1朱健民,李祥,黄建华.非自伴情形下时滞抛物方程的惯性流形[J].国防科技大学学报,2006,28(3):120-123. 被引量:1
  • 2朱健民,李祥,黄建华.拟周期时滞耗散半线性波方程的惯性流形[J].应用数学,2007,20(2):263-269. 被引量:2
  • 3叶其孝 李正元.反应扩散方程引论[M].北京:科学出版社,1999..
  • 4Teman R. Infinite-dimensional Dynamical Systems in Mechanics and Physics. NewYork: Springer-Verlag, 1988.
  • 5Monvel L, Chueschov I, Rezounenko A. Inertial manifold for retard semilinear parabolic equatins. Non- linear Analysis, 1998, 34:907-925.
  • 6Rezouneko A. Approximate inertial manifolds for retarded semilinear parabolic equations. J Math Anal Appl, 2003, 282:614 -628.
  • 7Travis C, Webb D. Existence and stability for partial functional differential equations. Transactions AMS, 1974, 200:395-418.
  • 8Wu J. Theory and Applications of Partial Functional Differential Equations. New York, Berlin: Springer- verlag, 1996.
  • 9Debussche A, Temam R. Inertial manifolds with delay. Appl Math Lett, 1995, 8:21-24.
  • 10Chepyzhov V, Vishik I. Attractor of non-autonomous dynamical systems and their dimension. J Math Pure Appl, 1994, 73:279- 333.

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部