期刊文献+

一类随机SIR流行病模型的渐近行为研究 被引量:6

The Asymptotic Behavior of an Stochastic SIR Epidemic Model
原文传递
导出
摘要 考虑了一类恢复率受到噪声影响的随机SIR流行病模型.首先证明了模型非负解的全局存在惟一性;其次证明了当基本再生数R_0≤1时无病平衡点随机渐近稳定,当R_0>1时随机模型的解围绕确定性模型地方病平衡点震荡.最后通过数值仿真验证了所得结论的正确性. In this paper, we consider a stochastic SIR epidemic model in which the
出处 《生物数学学报》 2013年第1期47-52,共6页 Journal of Biomathematics
基金 国家自然科学基金资助项目(10871129) 上海市教委科研基金资助项目(09YZ208)
关键词 随机SIR流行病模型 布朗运动 伊藤公式 渐近行为 Stochastic SIR model Brownian motion Ito's formula Asymptotic behavior
  • 相关文献

参考文献7

  • 1Kermack W O, McKendrick A G. McKendrick A G.Contributions to the mathematical theory of epidemics[J]. Proc. R. Soc, 1927, A115:700-721.
  • 2叶志勇,豆中丽,马文文,周锋.具有种群Logistic增长的SIR模型的稳定性和Hopf分支[J].生物数学学报,2012,27(2):233-240. 被引量:2
  • 3李宽国,刘广菊,陶松涛,丁光涛,方立铭.研究SIR传染病数学模型的Lagrange-Noether方法[J].生物数学学报,2011,26(3):435-440. 被引量:2
  • 4Anderson R M, May R M. Population biology of infectious diseases [J]. Nature, 1979, 280(5721):361-367.
  • 5Jiang D Q, Shi N Z. The long time behavior of DI SIR epidemic model with stochastic perturbation[J]. JMath Anal Appl, 2005, 303(1):164-172.
  • 6Yu J J, Jiang D Q, Shi N Z. Global stability of two-group SIR model with random perturbation[J]. J MathAnal Appl, 2009, 360(1):235-224.
  • 7Jiang D Q, Yu J J, Ji C Y, Shi N Z. Asymptotic behavior of global positive solution to a stochastic SIRmodel [J]. Math. Comput Modeling, 2011,54(1-2):221-232.

二级参考文献13

共引文献2

同被引文献32

  • 1赵春色,刘迎东.具有扩散项的SIR模型的动力学[J].北京交通大学学报,2007,31(3):84-86. 被引量:3
  • 2郑燕 魏纯辉.一类高次自催化反应扩散方程的动态分歧.四川大学学报:自然科学版,2009,:46-48.
  • 3Grandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues [ J ]. J Funct Anal, 1971,8:321.
  • 4Rabinowitz P H. A bifurcation theorem for nonlinear eigenvalue problems [ J ]. J Funct Anal, 1971,7:487.
  • 5Ma T, Wang S H. Bifurcation Theory and Applications [ M ]. Beijing:World Scientific,2005.
  • 6Handfield R,Waiton S V,Sroufe R,etal.Applying envi- ronmental criteria to supplier assessment:A study in the applica- tion of the Analytical Hierarchy proeess [J].Euro Pean Journal of Operational Research,2002,141 (1):70-87.
  • 7Hyman J, Li J. The differential infectivity and staged progression models for the transmission of HIV[J]. Mathematical Biosciences, 1999, 155(2):77-109.
  • 8Jiang D Q, Ji C Y, Shi N Z, Yu J J. The long time behavior of DI SIR epidemic model with stochasitc perturbation[J]. Journal of Mathematical Analysis and Applications, 2010, 372(1):162-180.
  • 9Liu H, Yang Q S, Jiang D Q. The asymptotic behavior of stochastically perturbed DI SIR epidemic models with saturated incidences[J]. Automa$ica, 2012, 48(5):820-825.
  • 10Ji C Y, Jiang D Q, Yang Q S, Shi N Z. Dynamics of a multigroup SIR epidemic model with stochastic perturbation[J]. Automatica, 2012, 48(1):121-131.

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部