期刊文献+

非线性循环及R^m上线性循环的终止性判定 被引量:1

Termination Analysis of Nonlinear Loops and Linear Loops in R^m
在线阅读 下载PDF
导出
摘要 为了研究程序设计中的软件可信性问题,分析了非线性单重循环程序While x∈Ωdo{x:=f(x)}end当Ω为有限个互不相交的闭区间之并时的终止性,证明该终止性在一定条件下可以由周期轨道的存在性加以判别,给出了确定条件下此类程序不终止的充分必要条件,并建立了相应的判定程序。进一步,利用Brower不动点定理及凸分析的理论,在Rm上建立了当循环条件Ω是有限个互不相交的闭凸集之并时线性循环程序终止性判定的方法。 To study the problem of reliability of software in program design,the termination of program was discussed While x∈Ω do {x: =f(x)} end under the condition that Ω is union of finite mutually disjoint closed intervals.It was proven that the termination of such loops under some definite conditions can be determined by the existence of period orbits.The necessary and sufficient condition of the non-termination for such programs under definite conditions was discussed and corresponding algorithms were given.In addition,applying Brower fixed point theorem and the theory of convex analysis,the conclusion of termination of linear loops when loop condition Ω is union of finite mutually disjoint closed convex sets in Rm was given.
作者 陈敬敏
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2013年第2期110-116,共7页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(11101295) 国家自然科学基金资助项目(N61103110) 重庆市科技攻关项目(cstc2012ggB40004)
关键词 非线性循环 线性循环 终止性分析 周期轨道 nonlinear loops linear loops termination analysis periodic orbit
  • 相关文献

参考文献17

  • 1Cousot P. Proving program invariance and termination by parametric abstraction, langrangian relacation and semidefinite programming[ C]//Cousot R. Proceedings of the VM- CAI 2005. LNCS, Heidelberg: Springer-Verlag, 2005 : 1 - 24.
  • 2Colon M, Sipma H B. Practical methods for proving program termination [ C ]//Proceedings of the CAV 2002. Heidelberg: Springer-Verlag,2002:442 - 454.
  • 3Chen Yinghua, Xia Bican, Yang Lu, et al. Discovering nonlinear ranking functions by solving semi-algebraic systems [ C ]//LNCS, Heidelberg: Springer-Verlag,2007 : 34 - 49.
  • 4Dams D, Gerth R, Grunberg O. A heuristic for the automatic generation of ranking functions [ C ]//Alur R. Proceedings of the Workshop on Advances in Verification. Chicago:University of Utah Press ,2000 : 1 - 8.
  • 5Tiwari A. Termination of linear programs [ C ]//Alur R, Peled D A. Proceedings of the CAV 2004. LNCS, Heidelberg: Springer-Verlag,2004:70 - 82.
  • 6Yang Lu ,Zhan Naijun, Xia Bican, et al. Program verification by using DISCOVERER [ C ]//Meyer B, Woodcock J. Proceedings of the Verified Software. LNCS 4171,2008:528 - 538.
  • 7Yang Lu, Zhou Chaochen, Zhan Naijun, et al. Recent advances in program verification through computer algebra [ J ]. Front Computer Science, 2010,4 ( 1 ) : 1 - 16.
  • 8Xia Bican, Zhang Zhihai. Termination of linear programs with nonlinear constraints [ J ]. Journal of Symbolic Computation, 2010,45:1234 - 1249.
  • 9Xia Bican, Yang Lu, Zhan Naijun, et al. Symbolic decision procedure for termination of linear programs[ J]. Formal Aspects of Computing,2011,23 (2) : 171 - 190.
  • 10李骏,李轶,冯勇.一类循环条件非线性的程序终止性[J].四川大学学报(工程科学版),2009,41(1):129-133. 被引量:4

二级参考文献36

  • 1杨路,侯晓荣,夏壁灿.A complete algorithm for automated discovering of a class of inequality-type theorems[J].Science in China(Series F),2001,44(1):33-49. 被引量:24
  • 2李骏,李轶,冯勇.一类循环条件非线性的程序终止性[J].四川大学学报(工程科学版),2009,41(1):129-133. 被引量:4
  • 3Podelski A, Rybalchenko A. A complete method for the synthesis of linear ranking functions. In: Steffen B, ed. Proc. of the Verification, Model Checking, and Abstract Interpretation. LNCS 2937, Heidelberg: Springer-Verlag, 2004. 239-251.
  • 4Dams D, Gerth R, Grumberg O. A heuristic for the automatic generation of ranking functions. In: Alur R, ed. Proc. of the Workshop on Advances in Verification. Chicago: University of Utah Press, 2000. 1-8.
  • 5Colon M, Sipma HB. Synthesis of linear ranking functions. In: Margaria T, ed. Proc. of the Tools and Algorithms for Construction and Analysis of Systems. LNCS 2031, Heidelberg: Springer-Verlag, 2001.67-81.
  • 6Chen YH, Xia BC, Yang L, Zhan N J, Zhou CC. Discovering non-linear ranking functions by solving semi-algebraic systems. In: John F, ed. Proe. of the Theoretical Aspects of Computing (ICTAC 2007). Heidelberg: Springer-Verlag, 2007.34-49.
  • 7Tiwari A. Termination of linear programs. In: Alur R, ed. Proc. of the Computer Aided Verification. LNCS 3114, Heidelberg: Springer-Verlag, 2004. 70-82.
  • 8Cousot P. Proving program invariance and termination by parametric abstraction, Lagrangian relaxation and semi-definite programming. In: Cousot R, ed. Proc. of the Verification, Model Checking, and Abstract Interpretation. LNCS 3385, Heidelberg: Springer-Verlag, 2005.61-81.
  • 9Bradley AR, Manna Z, Sipma HB. Termination of polynomial programs. In: Cousot R, ed. Proc. of the Verification, Model Checking, and Abstract Interpretation. LNCS 3385, Heidelberg: Springer-Verlag, 2005. 113-129.
  • 10Yang L, Zhan NJ, Xia BC, Zhou CC. Program verification by using DISCOVERER. In: Meyer B, ed. Proc. of the Verified Software. LNCS 4171, Heidelberg: Springer-Verlag, 2008. 528-538.

共引文献7

同被引文献6

  • 1Domagoj Babi?,Byron Cook,Alan J. Hu,Zvonimir Rakamari?.Proving termination of nonlinear command sequences[J].Formal Aspects of Computing.2013(3)
  • 2Bican Xia,Zhihai Zhang.Termination of linear programs with nonlinear constraints[J].Journal of Symbolic Computation.2010(11)
  • 3Amir M. Ben-Amram.A complexity tradeoff in ranking-function termination proofs[J].Acta Informatica.2009(1)
  • 4Byron Cook,Andreas Podelski,Andrey Rybalchenko.Termination proofs for systems code[J].ACM SIGPLAN Notices.2006(6)
  • 5Christopher W. Brown.QEPCAD B[J].ACM SIGSAM Bulletin.2003(4)
  • 6李轶.线性循环程序的终止性判定[J].系统科学与数学,2013,33(5):626-638. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部