期刊文献+

以频率为目标的加筋平板结构优化设计研究 被引量:8

STRUCTURAL FREQUENCY OPTIMAL DESIGN OF STIFFENED PLATE
在线阅读 下载PDF
导出
摘要 以加筋平板结构的多阶模态频率达到指定值为优化目标,探讨结构的优化设计方法。提出一种双向渐进结构拓扑优化法结合尺寸优化方法的结构频率优化设计的改进方法。该方法采用具有规则格栅骨架的加筋平板结构优化模型,以骨架中的梁为结构修改基本单位,以梁敏度计算为基础。实现以频率为目标函数、以体积为约束,并结合敏度再分配策略的结构优化设计。最后,运用尺寸优化方法对优化结果进行后续详细设计。经加筋平板结构频率优化设计算例证明,该方法能满足结构的多阶模态频率优化要求;同时优化结果不存在一般拓扑优化的不规则结构问题,抑制局部模态的产生,对飞机风洞颤振实验模型的设计具有借鉴意义。 Structural optimal design of stiffened plate with multi order modal frequencies objective is discussed. A new method combined with improved bi-directional evolutionary structural optimization (BESO) and size optimization is introduced. An optimization model consists of regular shaped grid-like frame structure is established. The bars of the frame structure are regarded as basic unites of structure modification and the bars' sensitivity is discussed. The frequencies are used as design target with volume constraint, and adjacent sensitivity redistribution method is adopted to suppress numerical instability. Finally, size optimization is supplemented to complete the detailed design. This method is applied to a stiffened plate structure. Results show that the proposed approach is feasible to achieve a given set of modal frequencies. And there is no porous or irregular shaped structure in the optimized structure, and then the localized modes problem is avoid. This is very useful for designing wind tunnel test models in practice.
出处 《机械强度》 CAS CSCD 北大核心 2013年第2期179-182,共4页 Journal of Mechanical Strength
基金 国家自然科学基金青年基金(50605004) 辽宁省博士启动基金(20061064)资助
关键词 加筋平板 结构设计 频率优化 双向渐进结构优化 Stiffened plate Structural design Frequency optimization Bi-directional evolutionary structural optimization (BESO)
  • 相关文献

参考文献6

  • 1恽起麟.风洞试验[M].北京:国防工业出版社,2000.295-305.
  • 2Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization [J]. Computers and Structures, 1993, 49 (5) : 885-896.
  • 3顾松年,徐斌,荣见华,姜节胜.结构动力学设计优化方法的新进展[J].机械强度,2005,27(2):156-162. 被引量:45
  • 4Huang X, Xie Y M, Burry M C. Advantages of bi-directional evolutionary structural optimization (BESO) over evolutionary structural optimization ( ESO ) [ J ]. Advances in Structural Engineering, 2007, 10(6): 727-737.
  • 5荣见华,姜节胜,徐飞鸿,徐斌.一种基于应力的双方向结构拓扑优化算法[J].计算力学学报,2004,21(3):322-329. 被引量:21
  • 6Bendsoe M P, Sigmund O. Topology optimization: theory, methods and applications [ M ]. Berlin Heidelberg: Springer, 2003: 39- 46.

二级参考文献24

  • 1徐斌,姜节胜,闫云聚.具有频率约束的桁架结构可靠性拓扑优化[J].应用力学学报,2001,18(z1):45-49. 被引量:9
  • 2吴克恭,闫云聚,姜节胜.刚架与板组合结构动力学形状优化研究[J].机械科学与技术,2000,19(z1):63-65. 被引量:9
  • 3顾松年,姜节胜,徐斌.桁架优化解存在性的研究[J].西北工业大学学报,2004,22(6):720-725. 被引量:5
  • 4Bendsoe M P. Optimization of Structural Topology, Shape and Material[M]. Springer,1995.
  • 5Xie Y M, Steven G P. Evolutionary StructuralOptimization[M]. Springer-Verlag London Limited,1997.
  • 6Rong J H, Xie Y M, Yang X Y, et al. Topologyoptimization of structures under dynamic response constriants[J]. Journal of Sound Vibration, 2000,234(2):177-189.
  • 7Rong J H, Xie Y M, Yang X Y. An improvedmethod for evolutionary structural optimization against buckling[J]. Journal of Computers and Structures, 2001,79:253-263.
  • 8Kim H, Querin Q M, Steven G P, et al. Develo-pment of an intelligent cavity creation (ICC) algorithm for evolutionary structural optimization[A]. Proceedings of the Australian Conference on Structural Optimization, Sydney[C], 1998, 241-249.
  • 9Young V, Querin O M, Steven G P, et al. 3D bi-directional evolutionary structural optimisation (BESO)[A]. Proceedings of the Australian Conference on Structural Optimization[C], Sydney, 1998,275-282.
  • 10Cheng G D, Guo X.ε-Relaxed approach in structural topology optimization[J]. Struct Optim,1997,13(4):258-266.

共引文献95

同被引文献77

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部