期刊文献+

短期风速-风电功率预测方法 被引量:3

Prediction method of short term wind speed-wind power
在线阅读 下载PDF
导出
摘要 传统灰色风速预测模型累加处理时不能预测突变风速,使风电功率预测误差过大。采用数值逼近算法对传统灰色GM(1,1)预测模型进行优化改进,以优化的灰色GM(1,1)预测模型对未来时段风速进行预测,突变风速预测误差降低了34.3%。再将优化风速预测模型和时间序列动态神经网络相结合,构建出风电功率预测模型。应用该模型对酒泉地区某风电场现场数据进行仿真测试,预测效果可信度大于93%。 The traditional gray predictor model can not predict mutation of wind speed, leading wind power forecasting to excessive errors. The approximation algorithm was used to improve gray predictor model GM(1,1) for predicting the wind speed of future periods. The simulation results show that forecast mutation of wind speed errors decrease by 34.3%. The new wind speed forecast model is combined with time series based on dynamic neural network to predictor wind power. This model was tested at Jiuquan wind farm, and forecast credibility was greater than 93%.
出处 《电源技术》 CAS CSCD 北大核心 2013年第4期614-616,638,共4页 Chinese Journal of Power Sources
基金 甘肃省科技厅科技支甘项目(1011JKCA172) 兰州市科技计划项目(2011-1-106)
关键词 灰色优化模型 短期风速预测 时间序列动态神经网络 风电功率预测 gray optimization model short-term wind speed forecasting time series dynamic neural network windpower forecasting
  • 相关文献

参考文献9

二级参考文献57

共引文献919

同被引文献17

  • 1刘韬文,李孝杰.考虑风力发电的电力系统经济调度[J].继电器,2007,35(S1):444-447. 被引量:24
  • 2姚天祥,刘思峰.离散GM(1,1)模型的特性与优化[J].系统工程理论与实践,2009,29(3):142-148. 被引量:16
  • 3丁明,吴义纯,张立军.风电场风速概率分布参数计算方法的研究[J].中国电机工程学报,2005,25(10):107-110. 被引量:221
  • 4BERNHARD L, KURT R, BERNHARD E, et al. Wind power pre- diction in Germanyecent advances and future challenges[C]. A- thens: European Wind Energy Conference, 2006.
  • 5KHAN A A, SHAHIDEHPOUR M. One day-ahead wind speed forecasting using wavelets [C]. US: 2009 IEEE Power Systems Conference and Exposition, 2009.
  • 6HADJILI M L, WERTZ V. Takagi-sugcno fuzzy modeling incorpo- rating input variables selection[J]. IEEE Trans on Fuzzy Systems, 2002, 10(6): 728-742.
  • 7SCI-IOLKOPF B, SMOLA A J, WILLIAMSON R C, et al. New support vector algorithms[J]. Neural Computation, 2000, 12(5): 1207-1245.
  • 8P E N M MONANI. Time series analysis model for rainfall data in jordan : case study for using time series analysis ~ J ]. American Journal of Environmental Science, 2012, 5(5): 63-65.
  • 9FREDERICO KEIZO ODAN, LUZA FERNANDA RIBEIRO REIS. Hybird water demand forecasting model associating artificial neural network with fburier ser/es[ J]. Journal of Water Resources Planning and Management,2012,138 ( 3 ) : 102 - 106.
  • 10耿天翔,丁茂生,刘纯,张军,师洪涛.宁夏电网风电功率预测系统开发[J].宁夏电力,2010(1):1-4. 被引量:9

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部