期刊文献+

最小熵反馈式变结构多模型融合算法 被引量:4

Minimum entropy and feedback structure-based algorithm for variable structure multi-model fusion
在线阅读 下载PDF
导出
摘要 传统变结构多模型方法(VSMM)在处理高机动目标状态估计问题和大观测误差时存在因模型集合与真实模式匹配欠佳导致估计质量下降的问题.本文结合最小信息熵准则(ME)提出一种反馈式变结构多模型融合算法(MEVSMM),将在所有模型相关的在线估计信息进行反馈,进而选取状态估计分布信息熵最小的模型集作为当前有效模型集,计算多模型估计结果;结合粒子滤波算法(PF)和设计擂台赛算法(CM),构造了易于工程实现的次优算法(PF–MEVSMM).理论分析与仿真表明,与传统VSMM算法相比,本法具有模型集更精简、有效,融合估计结果鲁棒性更强、精度更高的优点. When applying the traditional variable structure multi-model algorithms (VSMM) to the state estimation problems of high maneuver and large observation error, one may face the difficulty of estimation degradation caused by the mismatch between the prior model sets and the real modes. To deal with this difficulty, a minimum entropy VSMM algorithm (MEVSMM) is proposed based on the principle of minimum entropy. First, all model-based estimations are fed back online. Second, the optimal solution is found if the distributions of the related estimations satisfy the minimum entropy condition. A sub-optimal algorithm (PF-MEVSMM) is also designed by employing the particle filter (PF) and the challenge-match algorithm (CM). Comparing to some existing VSMM algorithms, the results demonstrate that the proposed algorithm can provide refined model sets with smaller sizes, as well as more robust and accurate estimation results.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2013年第3期372-378,共7页 Control Theory & Applications
基金 国家"973"计划资助项目(2012CB821200) 国家自然科学基金资助项目(61174024)
关键词 变结构多模型 反馈融合 最小熵 粒子滤波 variable structure multi-model feedback fusion minimum entropy particle filter
  • 相关文献

参考文献19

  • 1BAR-SHALOM Y, LI X R. Estimation and Tracking: Principles, Techniques, and Software [M]. Boston, MA: Artech House, 1998.
  • 2Li X R, JIKOV V P. Survey of maneuvering target tracking, part V: multiple-model methods [J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1255 - 1321.
  • 3MAGILL D T. Optimal adaptive estimation of sampled stochastic processes [J]. IEEE Transactions on Automatic Control, 1965, 10(4): 434 - 439.
  • 4LAINIOTIS D G. Optimal adaptive estimation: structure and param- eter adaptation [J]. IEEE Transactions on Automatic Control, 1971, 16(2): 160- 170.
  • 5ZHANG M, CHEN W D. Variable structure multiple model parti- cle filter for maneuvering radar target tracking [C] //2010 Interna- tional Conference on Microwave and Millimeter Wave Technology. Chengdu: IEEE, 2010:1754 - 1757.
  • 6QU H Q, PANG L P, LI S H. A novel interacting multiple model algorithm [J]. Signal Processing, 2009, 89(11): 2171 - 2177.
  • 7鉴福升,徐跃民,阴泽杰.改进的多模型粒子滤波机动目标跟踪算法[J].控制理论与应用,2010,27(8):1012-1016. 被引量:11
  • 8LAN J, LI X R. Equivalent-model augmentation for variable- structure multiple-model estimation [C] //The 14th International Conference on Information Fusion. Chicago: IEEE, 2011, 1 - 8.
  • 9LI X R, BARSHALOM Y. Multiple-model estimation with variable structure [J]. IEEE Transactions on Automatic Control, 1996, 41(4): 478 - 493.
  • 10LI X R. Multiple-model estimation with variable structure, part Ⅱ: model-set adaptation [J]. 1EEE Transactions on Automatic Control, 2000, 45(11): 2047 - 2060.

二级参考文献1

共引文献10

同被引文献35

  • 1张境麟,姚钰鹏,冯银辉,刘清.故障诊断预警系统在煤炭开采的应用[J].煤炭科学技术,2021,49(S01):175-182. 被引量:9
  • 2韩宝宏,闫明胜,段鹏飞,李志,张羽,朱慧敏.基于SOM-MQE模型的设备故障预警方法[J].工业技术创新,2021,8(1):74-78. 被引量:3
  • 3任继山.模型组转换算法在机动目标跟踪中的应用[J].上海航天,2007,24(5):54-57. 被引量:2
  • 4Bar-Shalom Y, Blom H A P. Tracking a maneuvering target using input estimation versus the interacting multiple model algorithm [J]. IEEE Transactions on Aerospace and Electronic Systems(S0018-9251), 1989, 25(2): 296-300.
  • 5LI Xiaorong, Bar-Shalom Y. Multiple-model estimation with variable structure [J]. IEEE Transactions on Automatic Control(S0018-9286), 1996, 41(4): 478-493.
  • 6LAN Jian, LI Xiaorong. Equivalent-model augmentation for variable-structure multiple-model estimation [C]// Information Fusion (FUSION), 2011 Proceedings of the 14th International Conference on, Chicago, USA, July 5-8, 2011 : 1-8.
  • 7XU Linfeng, LI Xiaorong. Hybrid grid multiple-model estimation with application to maneuvering target tracking [C]//IEEE 13th Conference on Information Fusion, Edinburgh, UK, July 26-29, 2010: 1-7.
  • 8LI Xiaorong, Jilkov. Multiple-model estimation with variable structure-part VI: expected-mode augmentation [J]. IEEE TransaetonsonAES(S0018-9251), 2005, 4(3): 853-867.
  • 9王阿琴,杨万扣,孙长银.基于子图像的尺度自适应Mean shift目标跟踪[J].东南大学学报(自然科学版),2010,40(S1):131-135. 被引量:3
  • 10韩松,张晓林,陈雷,徐文进.基于改进高斯粒子滤波器的目标跟踪算法[J].系统工程与电子技术,2010,32(6):1191-1194. 被引量:6

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部