期刊文献+

Weighted Norm Inequalities with General Weights for the Commutator of Calderón 被引量:5

Weighted Norm Inequalities with General Weights for the Commutator of Calderón
原文传递
导出
摘要 In this paper, by a sharp function estimate and an idea of Lerner, the authors establish some weighted estimates for the m-multilinear integral operator which is bounded from L1 (Rn) ×..…… L1 (Rn) to L1/m,∞(Rn), and the associated kernel K(x; yl,.. , Ym) enjoys a regularity on the variable x. As an application, weighted estimates with general weights are given for the commutator of CalderSn. In this paper, by a sharp function estimate and an idea of Lerner, the authors establish some weighted estimates for the m-multilinear integral operator which is bounded from L1 (Rn) ×..…… L1 (Rn) to L1/m,∞(Rn), and the associated kernel K(x; yl,.. , Ym) enjoys a regularity on the variable x. As an application, weighted estimates with general weights are given for the commutator of CalderSn.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2013年第3期505-514,共10页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China (Grant No. 10971228)
关键词 Approximation to the identity weighted norm inequality singular integral operator max-imal operator non-smooth kernel Approximation to the identity, weighted norm inequality, singular integral operator, max-imal operator, non-smooth kernel
  • 相关文献

参考文献13

  • 1Coifman, R. R., Meyer, Y.: On commutators of singular integrals and bilinear singular integrals. Trans. Amer. Math. Soc., 212, 315-331 (1975).
  • 2Coifman, R. R., Meyer, Y.: Nonlinear Harmonic Analysis, Operator Theory and P. D. E. In: Beijing Lec- tures in Harmonic Analysis (Beijing, 1984), Ann. Math. Stud. 112, Princeton University Press, Princeton, 1986, 3-45.
  • 3Grafakos, L., Torres, R. H.: Maximal operators and weighted norm inequalities for multilinear singular integrals. Indiana Univ. Math. J., 51, 1261-1276 (2002).
  • 4Grafakos, L., Torres, R. H.: Multilinear Calder6n-Zygmund theory. Adv. in Math., 165, 124-164 (2002).
  • 5Lerner, A. K., Ombrosi, S., P@rez, C., et al.: New maximal functions and multiple weights for the multilinear CalderSn-Zygmund theory. Adv. in Math., 220, 1222-1264 (2009).
  • 6Duong, X., Grafakos, L., Yan, L.: Multilinear operators with non-smooth kernels and commutators of singular integrals. Trans. Amer. Math. Soc., 362(4), 2089-2113 (2010).
  • 7Duong, X., Gong, R., Grafakos, L., et al.: Maximal operators for multilinear singular integrals with non- smooth kernels. Indiana Univ. Math. J., 58(6), 2517-2542 (2009).
  • 8John, F.: Quasi-isometric Mappings, Seminar 1962-1963 di Analisi, Algebra, Geometria e Topologia, Roma, 1965.
  • 9StrSmberg, J. 0.: Bounded mean oscillation with Orlicz norm and duality of Hardy spaces. Indiana Univ. Math. J., 28, 511-544 (1979).
  • 10Lerner, A. K.: Weighted norm inequalities for the local sharp maximal function. J. Fourier Anal. Appl., 10, 645-674 (2004).

同被引文献22

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部